Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

ChatGPT Canvas 全新 AI 写作、源码、文本编辑工具,功能测试

By: Anonymous
2 October 2024 at 14:47

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

最近推出会主动思考推理的「 o1-preview 」,以及更即时、自然的「高级语音对话模式」后,今天又再次推出新功能:ChatGPT Canvas」,这是基于 GPT-4o 架构开发的全新 写作、源码编辑界面。让 ChatGPT 不再只能对话,而可以进行更深入、准确的内容创作工作。

第一波更新中,ChatGPT Plus 和 Team 用户会先获得 Canvas 功能,而全球的企业和版用户将会在下周获得使用权限。并且 还计划在 Canvas 正式发布后,向所有 ChatGPT 用户开放这项新的人机协作界面。

实际测试后,我觉得可以把「ChatGPT Canvas」想象成一种 AI 文本、源码,在这个中,人和 AI 可以更有效率的协作,共同编辑更好的内容成果。

以前的 ChatGPT 是即时通,一切内容要在对话中生成,也只能用对话引导 AI 去生成、修改,这很多时候会有点麻烦,常常在问答的过程偏离主题,难以指定要修改的部分,容易愈改愈乱,再也回不去之前更好的版本。

但是「ChatGPT Canvas」能够解决上述问题,它让人与 AI 在一个类似文本编辑的界面中讨论,就像多人一起编辑一份在线文件那样,可以一起处理文字、源码内容,可以针对任何指定段落修改,能够整合人与 AI 各自编写的内容,最后一起合作完成一份文本。

于是, ChatGPT 不再只是「对话软件」,而可以当作真正的「AI 文本内容、源码内容编辑器」,你可以利用来处理下面的工作流程:

在这篇文章中,我通过一个完整的写作实测案例,带大家了解 Canvas 的操作流程、快捷功能以及它如何帮助创作者解决具体问题。

ChatGPT 的 AI 模型中切换到「GPT-4o with canvas」模式,下面我测试看看利用这个新界面编写一篇文章。

首先,我先利用原本常用的 AI 指令结构,结合我的想法草稿,请 ChatGPT 改写成一篇完整的文章内容。

ChatGPT Canvas 全新 AI 写作、源码、文本编辑工具,功能测试

当 AI 开始编写文章草稿,或是源码时,「GPT-4o with canvas」就会像是下图这样,进入独立的文件编辑界面。

进入独立的 Canvas 编辑界面后,最大的优点就是,我们甚至可以直接在上面修改 AI 生成的文章内容。

于是这样一来,可以实现更流畅的「人与 AI 的协同写作流程」。

以前 AI 生成的内容,我们有不满意的地方,无法人为的介入修改,只能让 AI 自己去改,而常常愈改愈乱。

现在, AI 生成的草稿,我可以直接在编辑界面介入,修改成我觉得更好的版本,然后再请 AI 接续调整,实现真正的人与 AI 协同合作。

「GPT-4o with canvas」不只可以修改内容,也可以调整粗体、标题样式,就像是一个结合 AI 功能的简易 Word 编辑器,还支持 markdown 编辑格式

以文章写作的 ChatGPT Canvas 界面为例,编辑界面右下方会出现一排「快捷功能菜单」,文章写作、源码编辑会有不同的对应菜单。

「快捷菜单」中有很多默认功能,可以快速修改整篇文章、源码的内容。

例如其中有一个「阅读等级」的调整按钮,可以把文章的内容改成从小孩子到博士等级的不同风格与深度。

下面是一篇我让 AI 改写的、文章,我让 ChatGPT 把原本相对专业的文章内容,改成适合小朋友阅读的版本。

而下面是同一篇第二大脑的教程文章,我让 ChatGPT 把原本相对口语的草稿,改成更精炼、专业的文章风格。〔可以跟上面的小朋友版本进行比较,都是同一篇草稿的不同阅读等级修改。

通过快捷功能,一个按钮就可以快速转换我们需要的文字深度与风格。

以文章编辑界面为例,具备下面几种快捷功能:

下图是按下「建议编辑」后,ChatGPT 针对不同段落提供的编辑建议,我只要按下允许,就可以让 AI 直接进行修改。

这是不是跟以前的对话生成内容有很大的不同?现在 ChatGPT 可以针对一篇长篇文章,提供各种分段的调整、建议与修改。

除了整篇文章的快捷修改、建议外,在「ChatGPT Canvas」的编辑界面中,我可以任意圈选一段觉得有问题的段落,这时候会浮现「Ask ChatGPT」的按钮,点击后,我可以输入这一段的修改建议,让 ChatGPT 去进行指定段落的调整。

这是不是很像我们在 Google 文件上提供伙伴文章修改建议?只是这一次,AI 成为我的伙伴,听从我的指令去修改。

更棒的事,在「ChatGPT Canvas」中不用再怕 AI 修改内容后,回不去之前可能更好的版本。

因为在编辑器中,自带了可以还原之前版本的功能,而且不只可以还原到前一个版本,也可以回到上上版、上上上版,或是跳回最新版本。

经过简单的文章写作实测,我们可以看到 ChatGPT Canvas 的可能性,它突破了传统 AI 对话生成文本的限制,将人机协同的创作流程无缝结合,无论是在写作还是程序设计的应用场景中,Canvas 以更灵活的编辑能力和快捷的功能,帮助用户实现了更精准、有效的工作流程。

对于我相对熟悉的文章创作者而言,ChatGPT Canvas 不仅提供了文稿即时的优化、编辑建议,还能调整文本的阅读等级和风格,帮助你快速针对不同的受众进行调整。而对于程序员,Canvas 的源码、注解添加与错误修正功能,让程序开发过程变得易于维护。

这样的功能让人与 AI 之间的互动变得更具深度,不再只是被动地接受 AI 的生成内容,而是能主动参与其中,实现真正的协同创作。

无论你是需要改进写作的创作者、需要帮助调试的程序员,还是想要在教育中使用 AI 辅助的教师或学生,ChatGPT Canvas 都是一个值得一试的工具。

Google NotebookLM 更新:用 AI 研究英文 YouTube,批量获取整理视频、音频内容

By: Anonymous
30 September 2024 at 13:12

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

Google NotebookLM 是一个强大的,可以让我们上传各种不同内容,建立属于自己的 库。通过这个工具,我们可以用自己专属的文件、PPT、网页、文章,让 AI 生成各种新的报告、文案、文章,甚至是客服解答。

这个工具让很多团队和公司都觉得非常实用。比起从别人的数据库中生成内容,直接从自己的专业文件与专属知识中获得 AI 回应,对工作的性来说更有效。

NotebookLM 推出了一个全新的升级,比前阵子推出的生成英文 Podcast 更实用!

现在它可以支持上传「 」,和上传自己的「录音文件」,让你用更多不同的内容建立属于自己的 AI 数据库。AI 会自动分析 YouTube 视频的字幕,并将录音文件转成各种语言的字幕,从而帮助你生成所需的内容。

这次升级带来了许多新的应用可能性,例如:

Google NotebookLM 原本已经支持上传 Google 文件、简报和网址进行分析,而现在更加入了 YouTube 视频和录音文件的支持。无论是中文、英文、日文等多国语言,NotebookLM 都能进行高效的 AI 整理与生成。

接下来,我通过图文介绍,这些新功能的实际使用方式。

打开「 Google NotebookLM 」,建立一个新的笔记本,然后就可以上传各种文件、文件、影音内容。

而在这次更新中,上传的内容增加了「YouTube」与「录音文件」两种选项。

Google NotebookLM 更新:用 AI 研究英文 YouTube,批量获取整理视频、音频内容

上传 YouTube 时,其实就是贴上 YouTube 视频的网址即可。

Google NotebookLM 不支持某些视频,例如没有字幕、不公开、最近才上传的视频,都可能导入失败。

我把自己收集的大量跟「个人知识管理系统」有关的英文 YouTube 视频,全部上传到 Google NotebookLM,立刻整理成「中文」的第二大脑学习笔记内容。

看起来效果还算是精准有效。

也可以把 YouTube 视频,跟其他的文件、网页文章,全部一起上传到同一个数据库。

AI 生成的内容与回答,也会从数据库的不同视频、不同文章多种不同内容,整理出答案,引用不同形式的参考资料。

也就是说,现在文字、视频、声音内容,都可以在 Google NotebookLM 的同一个数据库中进行解析,让 AI 同时分析多种内容形式,生成更有效地回答。

AI 问答时,针对 YouTube 视频,AI 会抓出视频的字幕进行解析与诠释,回答时也会引用视频内容,我们可以看到视频完整的字幕稿,以及跟答案有关的引用部分。

另外这次升级,Google NotebookLM 还推出了一个更实用的更新,就是可以上传录音文件,解析出完整字幕〔中文也支持〕,并进行知识问答或整理

下面是我把一个 40~50 分钟的录音文件上传,解析出的完整字幕内容。

字幕本身不算很完美,但理解内容没问题,更重要的是,这些录音字幕,就可以变成 AI 未来生成我需要的内容的素材。

例如我上传很多次很长时间的会议录音文件,问他会议中的某个重点:

Google NotebookLM 就可以正确的挑出示哪一个会议录音文件的哪一段内容,提供回答,也可以在引用中直接让我跳到该次会议的录音字幕段落!

我也可以汇整一个项目多次的会议录音文件,请 AI 根据会议录音文件撰写报告、文案Google NotebookLM 也表现得还不错。

或者,我之前常常提到,我喜欢用说的把想法讲出来,再看怎么语音转文字,变成报告或文章的草稿。

Google NotebookLM 中,我现在可以更自在地先把想法完成的录音下来,把录音文件上传,让 NotebookLM 整理杂乱想法,引用原文,改写成通顺文章。

Google NotebookLM 的最新升级让它成为学习与工作上的强大工具,特别是支持 YouTube 视频和录音文件的上传与解析!

无论是学习英文视频、整理会议录音,还是将录音内容转换成报告和文章,Google NotebookLM 都能以有效帮助我们处理繁琐的资料,并生成实用的 AI 回应。

通过整合多种语言与多形式内容〔文章、PDF、简报、网页、视频、录音等等〕,Google NotebookLM 这个工具让学习和工作流程变得更聪明,无论你是学生、老师、职场专业人士,还是创作者,NotebookLM 都是一个值得试试看的 AI 助手。

Claude 3.5 VS ChatGPT-4o 生成 Web 小游戏实测对比

By: Anonymous
19 June 2024 at 20:57

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

经过了一年的时间,Claude 从 2.0 版陆续升级到 3.5 Sonnet 版本〔2024/6〕,在 Claude 3.5 Sonnet 中推出了几个显而易见的改进:

你只要免费注册登入一个「 Claude 」账户,就能开始使用最新的 Claude 3.5 Sonnet 模型,然后别忘了进入「Artifacts」功能,试试看直接在对话中生成你需要的网页小工具、小,乃至于简单的 PPT。

下面我会实际测试这些成果,并且与 制作出来的版本做对比,提供有兴趣的朋友参考。

我用下面这个共同指令,来测试看看 Claude 3.5 与 ChatGPT-4o 是否可以「直接」做出可用的乱序抽签网页小工具。

让我先来试试看 Claude 3.5 Sonnet 结合「Artifacts」的效果。直接输入上面的指令,Claude 就会分析我的需求,开始撰写源码,并立即生成可以预览、互动的 HTML 文件,而右边窗口可以直接进行操作。

看起来 Claude 3.5 Sonnet 只要简单的指令,就能很好的理解我的需求,并且可以自己设计需要的架构与源码,我并没有讲得太细,实际呈现出来的效果都是 Claude 3.5 Sonnet 自己分析出来的。

接着我们试试看 ChatGPT GPT-4o 做出来的成果如何?用同样的指令,ChatGPT 也可以根据我的需求自行分析网页需要的架构、逻辑,然后自行写出源码。

不过,ChatGPT 目前没办法像 Claude 那样在右方直接预览成果。

所以我请 ChatGPT 直接打包成 HTML 文件让我下载。

下载后,下面是 ChatGPT 制作出来的版本。界面与操作也很不错,并且自己加上了一个可以设置数字范围的额外字段。

和 Claude 3.5 Sonnet 版本对比,你觉得哪一个比较好呢?

接着,我测试了设计贪吃蛇网页小游戏,用下面的指令,直接套用在 Claude 和 ChatGPT 上。

把指令输入 Claude 3.5 Sonnet,同样的,AI 自动分析需要的架构、逻辑,一次问答,就生成出右方一个可以操作互动的贪吃蛇小游戏。

游戏中可以用键盘控制方向,有吃球长大的效果,也有失败的机制,是一个可玩的小游戏。

同样的指令输入 ChatGPT GPT-4oChatGPT 这次写出一串很长很长的源码,我同样请其直接打包成 HTML 文件给我,同样是一次生成,中间没有经过任何修改。

下面是 ChatGPT 制作出来的贪吃蛇小游戏,多出了一个「控制游戏快慢」的功能,而其他部分则和 Claude 的效果一样。

从前面两个实际测试案例来看, Claude 3.5 和 ChatGPT-4o 都能「一次生成」上述的网页小工具、小游戏,他们都会完整的分析我的需求,AI 自行进行需要的设计逻辑分析,然后自动写出完整的源码。

不过 Claude 3.5 Sonnet 多出了一个 Artifacts 功能,可以直接在右方预览效果,确实看起来很方便,如果要进一步修改,也会更加简单。

例如,我下面尝试让 Claude 3.5 Sonnet 制作 PPT,我先提供一些资料,请 AI 设计大纲并产出 PPT,Claude 3.5 Sonnet 就制作出一个可以在右方预览的版本,而且是真的可以翻页。

但我想调整风格,所以我上传一张风格图片,请 Claude 3.5 Sonnet 分析,并据此改变 PPT 风格,没想到效果居然非常好!〔如下图〕

看起来「 Claude 3.5 Sonnet」结合 Artifacts,确实值得要对源码、网页、文件有需求的朋友试试看。

Stacher – 基于 yt-dlp 的免费跨平台视频下载工具,支持几乎所有视频音乐平台

By: Anonymous
22 May 2024 at 14:26

DUN.IM BLOG

DUN.IM BLOG

Stacher – 基于 yt-dlp 的免费跨平台视频下载工具,支持几乎所有视频音乐平台

Stacher 是最近新问世的免费网络视频下载,支持 和 Linux,本身也是知名开放源码项目 yt-dlp〔由 youtube-dl 分支〕图形化界面〔GUI〕版本,大家都知道 yt-dlp 是终端里的下载工具,使用上会有一定的门槛,将它套用图形化后操作界面后就会更符合大众使用,支持超过 1200 种网络服务,之前曾介绍过的类似软件还有「Hitomi Downloader 」和「Seal」。

Stacher 已经有针对 Windows 和 Linux 三大操作系统推出对应的版本,只要从官方找到需要的版本后下载即可使用,本身没有自带中文界面,但在操作上不会困难,只需要将视频网址复制、粘贴后就能获取文件,也能够选择各种常见视频、格式。

利用 Stacher 可以下载 YouTube、Twitter、Instagram、TikTok、Bilibili、Pornhub 等网站视频,在使用时没有太多复杂难懂的设置,也支持包括 3GP、AAC、FLAC、FLV、M4A、MP3、MP4、OPUS、VORBIS、WAV、WEBM 等格式,最简单的方法就是维持默认值「最佳画质 + 音频」,就能获取包含影像、声音的视频文件咯!

值得一提的是 Stacher 还能针对要下载的平台提前设置账号密码,也有设置浏览器 Cookie 选项,无论是遇到任何状况只要适当设置应该都能顺利获取视频,如果平时会需要从网络平台储存视频的话可以试试看。

其他 YouTube 网络视频下载工具整理:

Stacher. A youtube-dl frontend.

进入 Stacher 网站后跳到下载区,选择要下载的程序版本,支持 WindowsmacOS 和 Linux,要注意的是都只适用于 64 位操作系统。

我使用 Stacher 的 Mac 版本进行操作教程,Windows 版本应该大同小异,进入后会有说明画面,可以得知应用程序是一个图形化界面下载器,以 yt-dlp 作为内核,因此在使用时会自动安装 yt-dlp。

进入 Stacher 主画面后会自动更新相关元件,上方是网址列,将视频网址复制、粘贴后就能进行下载。

从右上角可选择要下载、保存的文件格式,视频格式有 3GP、FLV、M4A、MP4、WEBM,格式有 AAC、FLAC、MP3、OPUS、VORBIS、WAV,建议直接维持默认值「BEST」就会自动获取最佳画质和音频。

下载时会显示视频略缩图、标题、文件大小、下载速率和预计完成时间,试着下载 YouTubeFacebook 和 Instagram 都能正确获取视频,而且下载速度很快。

完成后在视频上方点击右键、从菜单找到「Open Download Location」就能进入下载路径并找到视频文件。

另外,在右上角也能提前设置视频下载后的保存路径。

下载视频的网址列右侧有一个提前设置账号、密码功能,如果要存取的视频需要账号密码可提前设置,另一个选项可以选择浏览器 Cookie 来源,若无法正确下载视频的话就试试看调整这两个选项。

在 Stacher 设置画面能提前调整下载保存的视频路径、视频文件格式等选项,还有像是字幕下载、网络速度限制或是音质等等,可设置的项目很多,不过如果没有特殊需求只需要维持默认值即可。

前面有提到 Stacher 是使用 yt-dlp 作为内核,支持的服务超过 1000+ 个〔支持列表〕,基本上所有常见常用服务应该都能够利用这个应用程序下载,在测试时除了 YouTube 也下载 Facebook、Instagram 视频,也都能够顺利获取视频文件。

Stacher 是一款功能强大、操作简单的免费网络视频下载工具,非常适合新手使用。如果有下载网络视频的需求,不妨试试看 Stacher。

实用 AI 提示词优化高级指南,新加坡首届 GPT-4 提示工程大赛冠军分享 [译]

By: Anonymous
7 May 2024 at 16:02

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

上个月,我非常荣幸地在新加坡政府科技局(GovTech)组织的首届 GPT-4 提示工程大赛中脱颖而出,这场比赛吸引了超过 400 名杰出的参与者。

提示工程是一门将艺术与科学巧妙融合的学科 — 它不仅关乎技术的理解,更涉及创造力和战略思考。这里分享的是我在实践中学到的一些提示工程策略,这些策略能够精准地驱动任何大语言模型为你服务,甚至做得更多!

作者的话: 在写作本文时,我特意避开了那些已经广泛讨论和记录的常规提示工程。相反,我更希望分享一些我在实验中获得的新洞见,以及我个人在理解和应用这些技巧时的独到见解。希望你能从中获得乐趣!

本文涵盖以下主题,其中 🔵 代表初学者友好的技巧,而 🔴 代表高级策略。

在使用大语言模型时,有效的提示构建至关重要。CO-STAR 框架,由新加坡政府科技局科学与 AI 团队创立,是一个实用的提示构建工具。它考虑了所有影响大语言模型响应效果和相关性的关键因素,帮助你获得更优的反馈。

这里有一个 CO-STAR 框架为何有用的现实案例。

假设你担任媒体经理,需要草拟一条 帖子,用以推广公司的新产品。 未使用 CO-STAR 的快速提示可能是这样的:

这是 GPT-4 的回答:

这一输出虽足够,但显得过于泛化,缺乏必要的细节和针对性吸引力,未能真正触及公司目标受众的心。

下面是一个应用 CO-STAR 模板的示例,它提醒我们在制定提示时,要考虑到任务的其它方面,特别是之前快速提示中缺少的风格语调受众

通过运用 CO-STAR 框架,GPT-4 的响应变得更具针对性和效果:

CO-STAR 框架指引您以有组织的方式提供所有关键任务信息,确保响应完全针对您的需求并进行优化。

分隔符是特殊的符号,它们帮助大语言模型 (LLM) 辨识提示中哪些部分应当被视为一个完整的意义单元。

这非常关键,因为你的提示是作为一个长的 Token 序列一次性传给模型的。通过设置分隔符,可以为这些 Token 序列提供结构,使特定部分得到不同的处理。

需要注意的是,对于简单的任务,分隔符对大语言模型的回应质量可能无显著影响。但是,任务越复杂,合理使用分隔符进行文本分段对模型的反应影响越明显。

分隔符可以是任何不常见组合的特殊字符序列,如:

选择哪种特殊字符并不重要,关键是这些字符足够独特,使得模型能将其识别为分隔符,而非常规标点符号。

这里是一个分隔符使用的示例:

在上述示例中,使用 ### 分隔符来分隔不同的部分,通过大写的章节标题如 对话示例 和 输出示例 进行区分。引言部分说明了要对 {{{CONVERSATIONS}}} 中的对话进行情绪分类,而这些对话在提示的底部给出,没有任何解释文本,但分隔符的存在让模型明白这些对话需要被分类。 GPT-4 的输出正如请求的那样,仅给出情绪分类:

使用 XML 标签作为分隔符是一种方法。XML 标签是被尖括号包围的,包括开启标签和结束标签。例如,{tag}{/tag}。这种方法非常有效,因为大语言模型已经接受了大量包含 XML 格式的网页内容的训练,因此能够理解其结构。

以下是利用 XML 标签作为分隔符对同一提示进行结构化的例子:

在指令中使用的名词与 XML 标签的名词一致,如 conversationsclasses 和 examples,因此使用的 XML 标签分别是 {conversations}{classes}{example-conversations} 和 {example-classes}。这确保了模型能够清晰地理解指令与使用的标签之间的关系。 通过这种结构化的分隔符使用方式,可以确保 GPT-4 精确地按照您的期望响应:

_在开始前,我们需指出,本节内容仅适用于具备系统提示功能的大语言模型 (LLM),与文章中其他适用于所有大语言模型的部分不同。显然,具有此功能的最知名的大语言模型是 ,因此我们将以 ChatGPT 为例进行说明。_

首先,我们来厘清几个术语:在讨论 ChatGPT 时,这三个术语「系统提示」、「系统消息」和「自定义指令」几乎可以互换使用。这种用法让许多人(包括我自己)感到混淆,因此 发表了一篇文章,专门解释了这些术语。简要总结如下:


图片来自 Enterprise DNA Blog

尽管这三个术语表达的是相同的概念,但不必因术语的使用而感到困扰。下面我们将统一使用「系统提示」这一术语。现在,让我们一探究竟!

系统提示是您向大语言模型提供的关于其应如何响应的额外指示。这被视为一种额外的提示,因为它超出了您对大语言模型的常规用户提示。

在对话中,每当您提出一个新的提示时,系统提示就像是一个过滤器,大语言模型会在回应您的新提示之前自动应用这一过滤器。这意味着在对话中每次大语言模型给出回应时,都会考虑到这些系统提示。

系统提示一般包括以下几个部分:

例如,系统提示可能是这样的:

每一部分对应的内容如下图所示:

系统提示已经概括了任务的总体要求。在上述示例中,任务被定义为仅使用特定文本进行问题解答,同时指导 LLM 按照{"问题":"答案"}的格式进行回答。

这种情况下,每个用户提示就是您想用该文本回答的具体问题。

例如,用户提示可能是"这篇文本主要讲了什么?",LLM 的回答将是{"这篇文本主要讲了什么?":"文本主要讲述了……"}

但我们可以将这种任务进一步推广。通常,与只询问一个文本相比,你可能会有多个文本需要询问。这时,我们可以将系统提示的首句从

改为

如此,每个用户提示将包括要问答的文本和问题,例如:

此处,我们使用 XML 标签来分隔信息,以便以结构化方式向 LLM 提供所需的两个信息。XML 标签中的名词,text 和 question,与系统提示中的名词相对应,以便 LLM 理解这些标签是如何与指令相关联的。

总之,系统提示应提供整体任务指令,而每个用户提示则需要提供执行该任务所需的具体细节。在这个例子中,这些细节就是文本和问题。

在之前的讨论中,我们通过系统提示来设定规则,这些规则一经设定,将在整个对话中保持不变。但如果你想在对话的不同阶段实施不同的规则,应该怎么做呢?

对于直接使用 ChatGPT 用户界面的用户来说,目前还没有直接的方法可以实现这一点。然而,如果你通过编程方式与 ChatGPT 互动,那么情况就大不相同了!随着对开发有效 LLM 规则的关注不断增加,一些允许你通过编程方式设定更为详细和动态的规则的软件包也应运而生。

特别推荐的一个是由 NVIDIA 团队开发的NeMo Guardrails。这个工具允许你配置用户与 LLM 之间的预期对话流程,并在对话的不同环节设定不同的规则,实现规则的动态调整。这无疑是探索对话动态管理的一个很好的资源,值得一试!

你可能已经听说过 OpenAI 在 ChatGPT 的 GPT-4 中为付费账户提供的高级数据分析插件。它让用户可以上传数据集到 ChatGPT 并直接在数据集上执行编码,实现精准的数据分析。

但是,你知道吗?并不总是需要依赖这类插件来有效地使用大语言模型 (LLM) 分析数据集。我们首先来探讨一下仅利用 LLM 进行数据分析的优势与限制。

正如你可能已经知道的,LLMs 在执行精确的数学计算方面有所限制,这让它们不适合需要精确量化分析的任务,比如:

正是为了执行这些量化任务,OpenAI 推出了高级数据分析插件,以便通过编程语言在数据集上运行代码。 那么,为什么还有人想仅用 LLMs 来分析数据集而不用这些插件呢?

LLMs 在识别模式和趋势方面表现出色。这得益于它们在庞大且多样化的数据上接受的广泛训练,能够洞察到复杂的模式,这些模式可能不是一眼就能看出来的。 这使它们非常适合执行基于模式查找的任务,例如:

对于这些基于模式的任务,单独使用 LLMs 可能实际上会在更短的时间内比使用编程代码产生更好的结果!接下来,我们将通过一个例子来详细说明这一点。

我们将使用一个流行的实际Kaggle 数据集,该数据集专为客户个性分析而设计,帮助公司对客户基础进行细分,从而更好地了解客户。 为了之后 LLM 分析的方便,我们将这个数据集缩减至 50 行,并仅保留最相关的几列。缩减后的数据集如下所示,每一行代表一位客户,各列展示了客户的相关信息:

设想你是公司营销团队的一员,你的任务是利用这份客户信息数据集来指导营销活动。这是一个分两步的任务:首先,利用数据集生成有意义的客户细分;其次,针对每个细分提出最佳的市场营销策略。

这是一个实际的商业问题,其中第一步的模式识别能力是 LLM 可以大显身手的地方。 我们将按以下方式设计任务提示,采用四种提示工程技术:

下面是 GPT-4 的回复,我们将继续将数据集以 CSV 字符串的形式传递给它。

随后,GPT-4 按照我们要求的标记符报告格式回复了分析结果:

为了简洁,我们选择两个由大语言模型生成的客户群体进行验证——“年轻家庭”和“挑剔的爱好者”。

年轻家庭

– 大语言模型生成的描述:出生于 1980 年后,已婚或同居,中等偏低的收入,育有孩子,常做小额消费。

– 此群体包括的数据行:3、4、7、10、16、20 – 深入查看这些数据行的详细信息,结果显示:


年轻家庭的完整数据 — 作者图片

这些数据完美对应大语言模型确定的用户描述。该模型甚至能够识别包含空值的数据行,而无需我们预先处理!

挑剔的爱好者

– 大语言模型生成的描述:年龄跨度广泛,不限婚姻状况,高收入,孩子情况不一,高消费水平。

– 此群体包括的数据行:2、5、18、29、34、36 – 深入查看这些数据行的详细信息,结果显示:


挑剔的爱好者的完整数据 — 作者图片

这些数据再次精准匹配大语言模型确定的用户描述!

本例展示了大语言模型在识别模式、解读及简化多维数据集以提炼出有意义的洞见方面的强大能力,确保其分析结果扎根于数据的真实情况。

为了全面考虑,我使用同一提示尝试了相同的任务,不过这次我让 ChatGPT 通过编程方式进行分析,启用了其高级数据分析插件。插件应用 K-均值等聚类算法直接对数据集进行处理,以便划分不同的客户群体,并据此制定营销策略。

尽管数据集仅含 50 行,多次尝试均显示错误信息且未产生任何结果:

当前情况表明,虽然高级数据分析插件能够轻松完成一些简单任务,如统计描述或生成图表,但在执行需要较大计算量的高级任务时,有时可能因为计算限制或其他原因而发生错误,导致无法输出结果。

答案因分析的具体类型而异。

对于需要精确的数学运算或复杂的规则处理的任务,传统的编程方法依然更加适用。

而对于依赖模式识别的任务,传统的编程和算法处理可能更加困难且耗时。大语言模型在这类任务中表现优异,能提供包括分析附件在内的额外输出,并能生成 Markdown 格式的完整分析报告。

总的来说,是否采用大语言模型取决于任务本身的性质,需要平衡其在模式识别上的强项与传统编程技术提供的精确度和特定性。

在本节结束前,让我们重新审视用于生成此数据分析的提示,并详细解析关键的提示工程技巧:

大语言模型(LLM)擅长处理简单的任务,对于复杂的任务则表现不佳。因此,在面对复杂任务时,把它分解成一步步简单的指令是至关重要的。这种方法的核心思想是,明确告知 LLM 你自己执行该任务时会采取的每一个步骤。

例如,具体步骤如下:

这样的分步指导,比起直接要求 LLM「对客户进行分组并提出营销策略」的方式,能显著提高其输出的准确性。

在提供步骤时,我们会用大写字母标记每个步骤的输出,这样做是为了区分指令中的变量名和其他文本,方便后续引用这些中间输出。

例如数据聚类(CLUSTERS)聚类描述(CLUSTER_INFORMATION)聚类命名(CLUSTER_NAME)营销策略(MARKETING_IDEAS)策略解释(RATIONALE)

此处我们请求一个 Markdown 格式的报告,以增强响应的可读性和结构性。利用中间步骤的变量名,可以明确报告的构架。

此外,你还可以让 ChatGPT 将报告以可下载文件形式提供,便于你在编写最终报告时参考使用。

在我们的首个提示中,你会发现我们并没有直接将数据集交给大语言模型(LLM)。反而,提示只给出了数据集分析的任务指令,并在底部添加了这样的话:

随后 ChatGPT 表示它已理解,并在下一个提示中,我们通过 CSV 字符串的形式将数据集传递给它:

但为什么需要将指令与数据集分开处理呢?

这样做可以帮助大语言模型更清晰地理解各自的内容,降低遗漏信息的风险,尤其是在指令较多且复杂的任务中。

你可能遇到过这样的情况:在一个长的提示中提出的某个指令被「偶然遗忘」了——例如,你请求一个 100 字的回答,但大语言模型却给出了更长的段落。

通过先接收指令,再处理这些指令所对应的数据集,大语言模型可以更好地消化它应该做的事情,然后再执行相关的数据操作。

值得注意的是,这种指令与数据集的分离只能在可以维护对话记忆的聊天型大语言模型中实现,而非那些没有这种记忆功能的完成型模型。

在本文结束之前,我想分享一些关于这次非凡旅程的个人思考。

首先,我要衷心感谢 GovTech Singapore 精心策划这场精彩的比赛。如果你对 GovTech 如何组织这场独一无二的比赛感兴趣,可以阅读 Nicole Lee——比赛的主要组织者撰写的这篇文章

其次,我要向那些出色的竞争对手们致以最高的敬意,每个人都展现了特别的才能,让这场比赛既充满挑战又富有成效!

我永远不会忘记决赛那一刻,我们在舞台上激烈竞争,现场观众的欢呼声——这是我将一直珍视的记忆。 对我而言,这不只是一场比赛;这是一次才华、创造力及学习精神的盛会。我对未来充满期待,并激动于即将到来的一切!

撰写本文让我感到非常愉快,如果你在阅读时也享受这份乐趣,希望你能花一点时间点赞并关注! 期待下一次的相遇!

DuckDuckGo AI Chat – 无需注册免费体验 GPT-3.5、Claude 3

By: Anonymous
3 May 2024 at 14:06

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

近期 DuckDuckGo 推出新产品「AI Chat」,用户在没有注册、登入下就能使用 GPT-3.5 和 Anthropic 的 Claude 聊天模型,对话内容不会被用来训练 模型,也不会储存任何聊天记录,想临时使用一下 AI 聊天就很推荐,而且具有中文界面。

目前 DuckDuckGo AI Chat 自带两种 AI 模型:OpenAI 的 GPT-3.5 Turbo、Anthropic 的 Claude 3 Haiku,用户可以在服务内自由切换不同模型,以获取不同的回答结果。

因为这项服务不会储存聊天记录,输入的内容也不会被用来训练 AI 模型,因此无法储存用户的内容,在每次进入新对话前都会清除对话,但也能够确保用户在使用 AI 对话时获得最高的保护。

DuckDuckGo. Privacy, Simplified.

进入 DuckDuckGo AI Chat 后会有简单的特色介绍,点击中间「开始使用」就会进入下一步。

接着选择要使用的 AI 模型,有 GPT-3.5 Turbo 和 Claude 3 Haiku 可用〔我在写这篇文章时是 Claude 1.2 Instant,看得出来在很短时间 AI Chat 就获得提升〕,选好模型后会有一个隐私权政策和使用条款,点击下方同意后就会进入聊天功能。

DuckDuckGo AI Chat 操作界面和一般对话 AI 类似,进入后会有欢迎信息,可以点击提示、带入各种默认的内容开始使用,或是从下方输入对话信息,目前 AI Chat 只支持文字,还无法上传或文件。

AI Chat 使用的模型都支持多国语言,如果使用中文输入的话也会得到中文回复。

因为不会记录对话、没有登入功能,对话内容就不会像 、Microsoft Copilot 等服务可以保留或在不同对话切换,要进入新的对话时点击聊天功能左侧「清除对话」按钮就会将对话清除、开始新的聊天室。

从左上角「设置」选择不同 AI 聊天模型,有 OpenAI GPT-3.5 和 Anthropic Claude 3 Haiku 可用。

整体来说,DuckDuckGo AI Chat 确实是很方便的工具,因为它最大程度保护用户的隐私和性,也整合多种不同的 AI 聊天模型,有点像「Poe 网页版」的感觉。

Meta AI 官方机器人使用教程,从注册、聊天到生成图片实测

By: Anonymous
14 April 2024 at 17:47

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

Meta 正式宣布推出新一代 AI 大型语言模型 Llama 3 后,也同步推出 Meta 聊天机器人,能够根据用户问题进行回应,能依照文字描述生成或制作动画与 GIF 图片。

想免费使用 Meta AI 聊天机器人可以通过本文介绍了解,告诉你如何使用 Meta 最新的 Llama 3 模型,而且还支持中文聊天对话,让你免也能使用脸书 Meta AI 聊天和生成图片服务。

Use Meta AI assistant to get things done, create AI-generated images for free, and get answers to any of your questions. Meta AI is built on Meta's latest Llama large language model and uses Emu, our…

不管是手机、平板或电脑都能使用 Meta AI 聊天功能,只要通过打开 Meta AI 网站后,点击「Log in with 」登入 FB 账号。

目前 Meta AI 聊天机器人仅开放美国、澳大利亚、加拿大、加纳、牙买加、马拉维、新西兰、尼日利亚、巴基斯坦、新加坡、南非、乌干达、赞比亚和津巴布韦国家才能使用。

尚未开放国家要使用 Meta AI 功能,可以通过 DUN.IM 匿名服务连接美国地区就可以使用 Meta AI 功能,不管是电脑版或手机版都可以。

当进入 VPN 后,刷新 Meta AI 网页就正常显示 Meta AI 聊天界面。

其实 Meta AI 聊天功能与 或 Claude AI 界面很像,只要在聊天室框内输入想要问的问题,像是规划活动行程之类问题,可以直接用中文提问,Meta AI 同样看得懂也能回答。

目前 Meta AI 算是测试版本阶段,默认都会是以英文回应,要是想要用中文回答,就要在问题后面加入「请用中文回答」Meta AI 才会直接改用中文回复,或者也可以直接打「后续都要用中文回答每个问题」,但容易会跳回英文会应。

测试用 Meta AI 来规划马祖四天三夜活动行程,其实在行程规划的算是不错,会列出每天上午、下午和晚上行程建议。

同时也测试看看 Meta AI 对于未来大盘走势,Meta Llama 3 会直接说无法预测未来走势,同时还会给出影响股市因素,以及提醒投资不要单纯依照预测和猜测。

Meta AI 也同样能够支持生成 AI 图片功能,不过这点就需要完全用英文描述〔Promp〕才能生成,直接输入后就会立即生成 4 张不同 AI 图片。

像是我直接要求 Meta AI 生成哥斯拉大战进击的巨人图片,图片在精致度和光影效果都算不错。

也可以要求 Meta AI 生成漫威黑寡妇穿旗袍图片,聊天机器人生成人物图片同样也是没太大问题。

通过 Meta AI 生成的图片,可以点击右上角「•••」点击「Download image」就可以下载到设备,每张图片大小也算是 1280×1280 高分辨率,基本这功能与 Meta Imagine 功能几乎是完全一样,图片左下角都会加入水印。

以上就是 Meta 最新语言模型 Meta Llama 3 使用方法,目前官方仅开放部分国外地区使用,未来也会陆续开放到更多国家,包含 Meta Imagine AI 生成图片功能,能依照文字描述来回答和生成各种图片。

未来 Meta 也计划将 Meta AI 延伸到 WhatsApp 聊天、Ray-Ban Meta 眼镜与 Meta Quest 设备上。

您的电子邮箱地址不会被公开。 必填项已用 * 标注

Cobalt.tools – 开源无广告免登录音视频下载工具,支持 YouTube、Tiktok、Instagram 等多平台

By: Anonymous
15 April 2024 at 16:38

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

Cobalt.tools 不同于其他同类型服务,主打的是零广告、无追踪器也没有令人烦躁的废话,界面相当干净,用户需要做的就是把音网址贴上即可获取文件,它同时也是项目,可以从 找到源码和相关信息,而且还有很详尽的更新信息,看得出来开发者相当用心维护、使这项服务正常运作。

save what you love. Contribute to wukko/cobalt development by creating an account on GitHub.

Cobalt.tools 当前支持的服务涵盖多数我们在日常生活会用到的影音平台。

在贴上网址后默认会为视频,可以设置中调整视频画质,包括 360p、480p、720p、1080p、1440p、4k 和 8k+ 的 MP4 格式,音频部分则有 MP3、OGG、WAV 和 OPUS 格式,用户还能设置选择要使用的文件名格式〔在文件名加入视频标题和相关信息〕,有需要从网络下载、保存视频的话不妨试试看。

程序的生成器,比较有趣的是还能制作 Facebook 贴文、Twitter 推文或是 YouTube 频道的画面截图。 简单介绍几…

cobalt is your go-to place for downloads from social and media platforms. zero ads, trackers, or other creepy bullshit. simply paste a share link and you're ready to rock!

进入 Cobalt.tools 会对它干净、简洁的界面印象深刻,直接将视频链接贴上、按下回车或点击右侧「»」符号就会自动下载为 MP4 格式〔默认为 Auto 自动模式,若要下载为音频格式可选择 Audio〕。

点击 Cobalt 网页下方「Settings」就会进入设置页面,首先会看到视频的画质选项,最低 360p、最高可达 8k+,不过依然要看视频来源能否达到该画质,若不行就会退而求其次自动选择最接近的选项替代。

另外,在下方还有针对 Twitter 自动从 Gifs 转换为 .gif,以及 YouTube 解码器选项,可以选择 h264、av1 或 vp9,会对应不同的格式和画质,如果没有特别需要其实不用调整。

在「Audio」分页能选择不同的下载音频格式,包括 MP3、OGG、WAV 和 OPUS,想要下载静音视频的话也能勾选「Mute audio」,即可将视频的音频部分静音、只保存影像内容。

在杂项设置中还能调整外观颜色〔自动、暗色和浅色模式〕,比较有用的是「文件命名风格」,可调整不同的自动命名方式,例如在文件名加入标题、信息和来源信息。

Cobalt.tools 是一个全自动的网络影音下载工具,在下载前不会有任何选项,记得使用前先到设置页面进行调整,完成后回到首页,将视频网址贴上后就能下载视频,非常简单。

有时候会遇到如下图的错误信息,代表 Cobalt 无法从该链接找到任何视频,这有可能是视频有区域限制或被屏蔽浏览,请稍候再试或选择其他替代服务。

❌
❌