Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Tune for Performance: Core types

By: hoakley
17 December 2024 at 15:30

When running apps on Intel Macs, because all their CPU cores are identical, the best you can hope for is that tasks make use of the number of cores available by running in multiple threads. Even single-threaded processes running on Apple silicon Macs get a choice of CPU core type, and this article explains the limited control you have over that.

m4coremanagement1

In my current model of CPU core allocation by macOS, shown in part above, Quality of Service (QoS) is the factor determining which core type a thread will be allocated to. QoS is normally hard-coded into an app, and seldom exposed to the user’s control.

If a thread is assigned a minimal QoS of Background (value 9), or less, then macOS will allocate it to be run on E cores, and it won’t be run on a P core. With a higher QoS, macOS allocates it to a P core if one is available; if not, then it will be run on E cores, with that cluster running at high frequency. Thus, threads with a higher QoS can be run on either P or E cores, depending on their availability.

taskpolicy

There are times when you might wish to accelerate completion of threads normally run exclusively on E cores. For example, knowing that a particular backup might be large, you might elect to leave the Mac to get on with that as quickly as possible. There are two methods that appear intended to change the QoS of processes: the command tool taskpolicy, and its equivalent code function setpriority().

Experience with using those demonstrates that, while they can be used to demote threads to E cores, they can’t promote processes or threads already confined to E cores so that they can use both types. For instance, the command
taskpolicy -B -p 567
that should promote the process with PID 567 to run on both types of core, has no effect on processes or their threads that are run at low QoS. taskpolicy can be used to demote processes and their threads with higher QoS to use only E cores, though. Running the command
taskpolicy -b -p 567
does confine all threads to the E cluster, and can be reversed using the -B option for threads with higher QoS (but not those set to low QoS by the process).

qoscores1

That can be seen in this CPU History window from Activity Monitor. An app has run four threads, two at low QoS and two at high QoS. In the left side of each core trace they are run on their respective cores, as set by their QoS. The app’s process was then changed using taskpolicy -b and the threads run again, as seen in the right. The two threads with high QoS are then run together with the two with low QoS in the four E cores alone.

The best way to take advantage of this ability to demote high QoS threads to run them on E cores is in St. Clair Software’s excellent utility App Tamer.

Virtualisation

macOS virtual machines running on Apple silicon chips are automatically assigned a high QoS, and run preferentially on P cores. Thus, even when running threads at low QoS, those are run within threads on the host’s P cores. This remains the only known method of electively running low QoS threads on P cores.

Game Mode, CPU cores

In the Info.plist of an application, the developer should assign that app to one of the standard LSApplicationCategoryTypes. If that’s one of the named game types, macOS automatically gives that app access to Game Mode. Among its benefits are “highest priority access” to the CPU cores, in particular the E cores, whose use by background threads is reduced. Other benefits include highest priority access to the GPU, and doubled Bluetooth sampling rate to reduce latency for input controllers and audio output. Game Mode is automatically turned on when the app is put into full-screen mode, and turned off when full-screen mode is stopped, although the user also has manual control through the mode’s item in the menu bar.

In practice, while this is beneficial to many games, it has little if any use for modifying core type allocation in other circumstances. As the user can’t modify an app’s Info.plist without breaking its signature and notarization, this is only of use to developers.

Summary

  • The QoS assigned by an app to its threads is used by macOS to determine which core type to allocate them to.
  • Threads with a low (Background, 9) QoS are run exclusively on E cores. Those with higher QoS are run preferentially on P cores, and normally only on E cores when no P core is available.
  • App Tamer and taskpolicy can be used to demote higher QoS threads to be run on E cores, but low QoS threads can’t be promoted to be run on P cores.
  • macOS VMs run on P cores, so low QoS threads running in a VM will be run on P cores, and can be used to accelerate Background threads.
  • Game Mode gives games priority access to CPU cores, particularly to E cores, but users can’t elect to run other apps in Game Mode, and there don’t appear to be benefits in doing so.
  • If you feel an app would benefit from user control over CPU core type allocation through access to their QoS, suggest it to the app’s developer.

Explainer

Quality of Service (QoS) is a property of each thread in a process, and normally chosen from the macOS standard list:

  • QoS 9 (binary 001001), named background and intended for threads performing maintenance, which don’t need to be run with any higher priority.
  • QoS 17 (binary 010001), utility, for tasks the user doesn’t track actively.
  • QoS 25 (binary 011001), userInitiated, for tasks that the user needs to complete to be able to use the app.
  • QoS 33 (binary 100001), userInteractive, for user-interactive tasks, such as handling events and the app’s interface.

There’s also a ‘default’ value of QoS between 17 and 25, an unspecified value, and in some circumstances you might come across others.

Which M4 chip and model?

By: hoakley
7 November 2024 at 15:30

In the light of recent news, you might now be wondering whether you can afford to wait until next year in the hope that Apple then releases the M4 Mac of your dreams. To help guide you in your decision-making, this article explains what chip options are available in this month’s new M4 models, and how to choose between them.

CPU core types

Intel CPUs in modern Macs have several cores, all of them identical. Whether your Mac is running a background task like indexing for Spotlight, or running code for a time-critical user task, code is run across any of the available cores. In an Apple silicon chip like those in the M4 family, background tasks are normally constrained to efficiency (E) cores, leaving the performance (P) cores for your apps and other pressing user tasks. This brings significant energy economy for background tasks, and keeps your Mac more responsive to your demands.

Some tasks are normally constrained to run only on E cores. These include scheduled background tasks like Spotlight indexing, Time Machine backups, and some encoding of media. Game Mode is perhaps a more surprising E core user, as explained below.

Most user tasks are run preferentially on P cores, when they’re available. When there are more high-priority threads to be run than there are available P cores, then macOS will normally send them to be run on E cores instead. This also applies to threads running a Virtual Machine (VM) using lightweight virtualisation, whose threads will be preferentially scheduled on P cores when they’re available, even when code being run in the VM would normally be allocated to E cores.

macOS also controls the clock speed or frequency of cores. For background tasks running on E cores, their frequency is normally held relatively low, for best energy efficiency. When high-priority threads overspill onto E cores, they’re normally run at higher frequency, which is less energy-efficient but brings their performance closer to that of a P core. macOS goes to great lengths to schedule threads and control core frequencies to strike the best balance between energy efficiency and performance.

Unfortunately, it’s normally hard to see effects of frequency in apps like Activity Monitor. Its CPU % figures only show the percentage of cycles that are used for processing, and make no allowance for core frequency. It will therefore show a background thread running at low frequency but 100%, the same as a thread overspilt from P cores running at the maximum frequency of that E core. So when you see Spotlight indexing apparently taking 200% of CPU % on your Mac’s E cores, that might only be a small fraction of their maximum capacity if they were running at maximum frequency.

There are no differences between chips in the M4 family when it comes to each type of CPU core: each P core in a Base variant is the same as each in an M4 Pro or Max, with the same maximum frequency, and the same applies to E cores. macOS also allocates threads to different types of core using the same rules, and their frequencies are controlled the same as well. What differs between them is the number of each type of core, ranging from 4 P and 4 E in the 8-core variant of the Base M4, up to 12 P and 4 E in the 16-core variant of the M4 Max. Thus, their single-core benchmark results should be almost identical, although their multi-core results should vary according to the number of cores.

Game Mode

This mode is an exception to normal CPU and GPU core use, as it:

  • gives preferential access to the E cores,
  • gives highest priority access to the GPU,
  • uses low-latency Bluetooth modes for input controllers and audio output.

However, my previous testing didn’t demonstrate that apps running in Game Mode were given exclusive access to E cores. But for gamers, it now appears that the more E cores, the better.

GPU cores

These are also used for tasks other than graphics, such as some of the more demanding calculations required for Machine Learning and AI. However, experience so far with Writing Tools in Sequoia 15.1 is that macOS currently offloads their heavy lifting to be run off-device in one of Apple’s dedicated servers. Although having plenty of GPU cores might well be valuable for non-graphics purposes in the future, for now there seems little advantage for many.

Thunderbolt 5

M4 Pro and Max, but not Base variants, come equipped with Thunderbolt ports that not only support Thunderbolt 3 and 4, but 5, as well as USB4. Thunderbolt 5 should effectively double the speed of connected TB5 SSDs, but to see that benefit, you’ll need to buy a TB5 SSD. Not only are they more expensive than TB3/4 models, but at present I know of only one range that’s due to ship this year. There will also be other peripherals with TB5 support, including at least one dock and one hub, although neither is available yet. The only TB5 accessories that are already available are cables, and even they are expensive.

TB5 also brings increased video bandwidth and support for DisplayPort 2.1, although even the M4 Max can’t make full use of that. If you’re looking to drive a combination of high-res displays, consult Apple’s Tech Specs carefully, as they’re complicated.

Although TB5 will become increasingly important over the next few years, TB3/4 and USB4 are far from dead yet and are supported by all M4 models.

Which M4 chip?

The table below summarises key figures for each of the variants in the M4 family that have now been released. It’s likely that next year Apple will release an Ultra, consisting of two M4 Max chips joined in tandem, in case you feel the burning desire for 24 P and 8 E cores.

m4configs2

Models available next week featuring each M4 chip are shown with green rectangles at the right.

There are two variants of the Base M4, one with 4P + 4E and 8 GPU cores, the same as Base variants in M1 to M3 families. There’s also the more capable variant, for the first time with 4P + 6E, which promises to be a better all-rounder, and when in Game Mode. It also has an extra couple of GPU cores.

The M4 Pro also comes in two variants, this time differing in the number of P cores, 8 or 10, and GPU cores, 16 or 20. Those overlap with the M4 Max, with 10 or 12 P cores and 32 or 40 GPU cores. Thus the gap between M4 Pro and Max isn’t as great as in the M3, with the GPUs in the M4 Max being aimed more at those working with high-res video, for instance. For more general use, there’s little difference between the 14-core Pro and Max.

Memory and storage

Chips in the M4 family also determine the maximum memory and internal SSD capacity. Apple has at last eliminated base models with only 8 GB of memory, and all now start with at least 16 GB. Base M4 chips are limited to a maximum of 32 GB, while the M4 Pro can go up to 64 GB, and the 16-core Max up to 128 GB, although in its 14-core variant, the Max is only available with 36 GB (I’m very grateful to Thomas for pointing this out below).

Unfortunately, Apple hasn’t increased the minimum size of internal SSD, which remains at 256 GB for some base models. Smaller SSDs may be cheaper, but they are also likely to have shorter lives, as under heavy use their small number of blocks will be erased for reuse more frequently. That may shorten their life expectancy to much less than the normal period of up to 10 years, as was seen in some of the first M1 models. This is more likely to occur when swap space is regularly used for virtual memory. I for one would have preferred 512 GB as a starting point.

While Base M4 chips come with SSDs up to 2 TB in size, both Pro and Max can be supplied with internal SSDs of up to 8 TB.

I hope this proves useful in guiding your decision.

Last Week on My Mac: M4 incoming

By: hoakley
3 November 2024 at 16:00

Almost exactly a year after it released its first Macs featuring chips in the M3 family, Apple has replaced those with the first M4 models. Benchmarkers and core-counters are now busy trying to understand how these will change our Macs over the coming year or so. Before I reveal which model I have ordered, I’ll try to explain how these change the Mac landscape, concentrating primarily on CPU performance.

CPU cores

CPUs in the first two families, M1 and M2, came in two main designs, a Base variant with 4 Performance and 4 Efficiency cores, and a Pro/Max with 8 P and 2 or 4 E cores, that was doubled-up to make the Ultra something of a beast with its 16 P and 4 or 8 E cores. Last year Apple introduced three designs: the M3 Base has the same 4 P and 4 E CPU core configuration as in the M1 and M2 before it, but its Pro and Max variants are more distinct, with 6 P and 6 E in the Pro, and 10-12 P and 4 E cores in the Max. The M4 family changes this again, improving the Base and bringing the Pro and Max variants closer again.

As these are complicated by sub-variants and binned versions, I have brought the details together in a table.

mcorestable2024

I have set the core frequencies of the M4 in italics, as I have yet to confirm them, and there’s some confusion whether the maximum frequency of the P core is 4.3 or 4.4 GHz.

Each family of CPU cores has successively improved in-core performance, but the greatest changes are the result of increasing maximum core frequencies and core numbers. One crude but practical way to compare them is to total the maximum core frequencies in GHz for all the cores. Strictly speaking, this should take into account differences in processing units between P and E cores, but that also appears to have changed with each family, and is hard to compare. In the table, columns giving Σfn are therefore simply calculated as
(max P core frequency x P core count) + (max E core frequency x E core count)

Plotting those sum core frequencies by variant for each of the four families provides some interesting insights.

mcoresbars2024

Here, each bar represents the sum core frequency of each full-spec variant. Those are grouped by the variant type (Base, Pro, Max, Ultra), and within those in family order (M1 purple, M2 pale blue, M3 dark blue, M4 red). Many trends are obvious, from the relatively low performance expected of the M1 family, except the Ultra, and the changes between families, for example the marked differences in the M4 Pro, and the M3 Max, against their immediate predecessors.

Sum core frequencies fall into three classes: 20-30, 35-45, and greater than 55 GHz. Three of the four chips in the M1 family are in the lowest of those, with only the M1 Ultra reaching the highest. The M4 is the first Base variant to reach the middle class, thanks in part to its additional two E cores. Two of the M4 variants (Pro and Max) have already reached the highest class, and any M4 Ultra would reach far above the top of the chart at 128 GHz.

Real-world performance will inevitably differ, and vary according to benchmark and app used for comparison. Although single-core performance has improved steadily, apps that only run in a single thread and can’t take advantage of multiple cores are likely to show little if any difference between variants in each family.

Game Mode is also of interest for those considering the two versions of the M4 Base, with 4 or 6 E cores. This is because that mode dedicates the E cores, together with the GPU, to the game being played. It’s likely that games that are more CPU-bound will perform significantly better on the six E cores of the 10-Core version of the iMac, which also comes with a 10-core GPU and four Thunderbolt 4 ports.

Memory and GPU

Memory bandwidth is also important, although for most apps we should assume that Apple’s engineers match that with likely demand from CPU, GPU, neural engine, and other parts of the chip. There will always be some threads that are more memory-bound, whose performance will be more dependant on memory bandwidth than CPU or GPU cores.

Although Apple claims successive improvements in GPU performance, the range in GPU cores has started at 8 and attained 32-40 in Max chips. Where the Max variants come into their own is support for multiple high-res displays, and challenging video editing and processing.

Thunderbolt and USB 3

The other big difference in these Macs is support for the new Thunderbolt 5 standard, available only in models with M4 Pro or M4 Max chips; Base variants still only support Thunderbolt 4. Although there are currently almost no Thunderbolt 5 peripherals available apart from an abundant supply of expensive cables, by the end of this year there should be at least one range of SSDs and one dock shipping.

As ever with claimed Thunderbolt performance, figures given don’t tell the whole story. Although both TB4 and USB4 claim ‘up to’ 40 Gb/s transfer rates, in practice external SSD performance is significantly different, with Thunderbolt topping out at about 3 GB/s and USB4 reaching up to 3.4 GB/s. In practice, TB5 won’t deliver the whole of its claimed maximum of 120 Gb/s to a single storage device, and current reports are that will only achieve disk transfers at 6 GB/s, or twice TB4. However, in use that’s close to the expected performance of internal SSDs in Apple silicon Macs, and should make booting from a TB5 external SSD almost indistinguishable in terms of speed.

As far as external ports go, this widens the gap between the M4 Pro Mac mini’s three TB5 ports, which should now deliver 3.4 GB/s over USB4 or 6 GB/s over TB5, and its two USB-C ports that are still restricted to USB 3.2 Gen 2 at 10 Gb/s, equating to 1 GB/s, the same as in M1 models from four years ago.

My choice

With a couple of T2 Macs and a MacBook Pro M3 Pro, I’ve been looking to replace my original Mac Studio M1 Max. As it looks likely that an M4 version of the Studio won’t be announced until well into next year, I’m taking the opportunity to shrink its already modest size to that of a new Mac mini. What better choice than an M4 Pro with 10 P and 4 E cores and a 20-core GPU, and the optional 10 Gb Ethernet? I seldom use the fourth Thunderbolt port on the Studio, and have already ordered a Kensington dock to deliver three TB5 ports from one on the Mac, and I’m sure it will drive my Studio Display every bit as well as the Studio has done.

If you have also been tempted by one of the new Mac minis, I was astonished to discover that three-year AppleCare+ for it costs less than £100, that’s two-thirds of the price that I pay each year for AppleCare+ on my MacBook Pro.

I look forward to diving deep into both my new Mac and Thunderbolt 5 in the coming weeks.

❌
❌