Anthropic 的内部团队正在利用 Claude Code 彻底改变他们的工作流程。无论是开发者还是非技术人员,都能借助它攻克复杂项目、实现任务自动化,并弥补那些曾经限制生产力的技能鸿沟。
为了深入了解,我们采访了以下团队:
通过这些访谈,我们收集了不同部门使用 Claude Code 的方式、它对工作带来的影响,以及为其他考虑采用该工具的组织提供的宝贵建议。
数据基础设施团队负责为公司内所有团队整理业务数据。他们使用 Claude Code 来自动化常规的数据工程任务、解决复杂的基础设施问题,并为技术和非技术团队成员创建文档化工作流,以便他们能够独立访问和操作数据。
利用截图调试 Kubernetes
当 Kubernetes 集群出现故障,无法调度新的 pod 时,团队使用 Claude Code 来诊断问题。他们将仪表盘的截图喂给 Claude Code,后者引导他们逐个菜单地浏览 Google Cloud 的用户界面,直到找到一个警告,指出 pod 的 IP 地址已耗尽。随后,Claude Code 提供了创建新 IP 池并将其添加到集群的确切命令,整个过程无需网络专家的介入。
为财务团队打造纯文本工作流
工程师向财务团队成员展示了如何编写描述其数据工作流程的纯文本文件,然后将这些文件加载到 Claude Code 中,以实现完全自动化的执行。没有任何编程经验的员工只需描述“查询这个仪表盘,获取信息,运行这些查询,生成 Excel 输出”等步骤,Claude Code 就能执行整个工作流,甚至会主动询问日期等必要输入。
为新员工提供代码库导览
当新的数据科学家加入团队时,他们会被指导使用 Claude Code 来熟悉庞大的代码库。Claude Code 会阅读他们的 Claude.md 文件(文档),识别特定任务所需的相关文件,解释数据管道的依赖关系,并帮助新人理解哪些上游数据源为仪表盘提供数据。这取代了传统的数据目录和发现工具。
会话结束时自动更新文档
在每项任务结束时,团队会要求 Claude Code 总结已完成的工作并提出改进建议。这创建了一个持续改进的循环:Claude Code 根据实际使用情况帮助优化 Claude.md 文档和工作流指令,使后续的迭代更加高效。
跨多个实例并行管理任务
在处理耗时较长的数据任务时,团队会为不同项目在不同的代码仓库中打开多个 Claude Code 实例。每个实例都能保持完整的上下文,因此即使在数小时或数天后切换回来,Claude Code 也能准确地记住他们当时正在做什么以及任务进行到哪里,从而实现了无上下文丢失的真正并行工作流管理。
无需专业知识即可解决基础设施问题
解决了通常需要系统或网络团队成员介入的 Kubernetes 集群问题,利用 Claude Code 诊断问题并提供精确的修复方案。
加速新员工上手
新的数据分析师和团队成员无需大量指导,就能迅速理解复杂的系统并做出有意义的贡献。
增强支持工作流
Claude Code 能够处理比人类手动审查大得多的数据量,并识别异常情况(例如监控 200 个仪表盘),这是人力无法完成的。
实现跨团队自助服务
没有任何编程经验的财务团队现在可以独立执行复杂的数据工作流。
编写详细的 Claude.md 文件
团队表示,你在 Claude.md 文件中将工作流程、工具和期望文档化得越好,Claude Code 的表现就越出色。当你拥有现成的设计模式时,这使得 Claude Code 在设置新数据管道等常规任务上表现卓越。
处理敏感数据时使用 MCP 服务器而非命令行界面
他们建议使用 MCP 服务器而不是 BigQuery 命令行界面,以便更好地控制 Claude Code 的访问权限,尤其是在处理需要日志记录或存在潜在隐私问题的敏感数据时。
分享团队使用心得
团队举办了分享会,成员们互相演示他们使用 Claude Code 的工作流程。这有助于传播最佳实践,并展示了他们自己可能没有发现的各种工具使用方法。
Claude Code 产品开发团队使用自家的产品来为 Claude Code 构建更新,扩展产品的企业级功能和 AI 智能体循环功能。
通过“自动接受模式”快速构建原型
工程师们通过启用“自动接受模式”(Shift+Tab)并设置自主循环,让 Claude 编写代码、运行测试并持续迭代,从而实现快速原型开发。他们将自己不熟悉的抽象问题交给 Claude,让它自主工作,然后在接手进行最后润色前,审查已完成 80% 的解决方案。团队建议从一个干净的 git 状态开始,并定期提交检查点,这样如果 Claude 跑偏了,他们可以轻松回滚任何不正确的更改。
同步编码开发核心功能
对于涉及应用程序业务逻辑的更关键功能,团队会与 Claude Code 同步工作,提供带有具体实现指令的详细提示。他们实时监控过程,确保代码质量、风格指南合规性和正确的架构,同时让 Claude 处理重复的编码工作。
构建 Vim 模式
他们最成功的异步项目之一是为 Claude Code 实现 Vim 快捷键绑定。他们要求 Claude 构建整个功能,最终实现中大约 70% 的代码来自 Claude 的自主工作,只需几次迭代即可完成。
生成测试和修复 bug
在实现功能后,团队使用 Claude Code 编写全面的测试,并处理在代码审查中发现的简单 bug。他们还使用 GitHub Actions 让 Claude 自动处理像格式问题或函数重命名这样的 Pull Request 评论。
代码库探索
在处理不熟悉的代码库(如 monorepo 或 API 端)时,团队使用 Claude Code 来快速理解系统的工作方式。他们不再等待 Slack 上的回复,而是直接向 Claude 提问以获取解释和代码参考,从而大大节省了上下文切换的时间。
更快的功能实现
Claude Code 成功实现了像 Vim 模式这样的复杂功能,其中 70% 的代码由 Claude 自主编写。
提升开发速度
该工具可以快速构建功能原型并迭代创意,而不会陷入实现细节的泥潭。
通过自动化测试提高代码质量
Claude 生成全面的测试并处理常规的 bug 修复,在减少手动工作的同时保持了高标准。
更好的代码库探索
团队成员可以快速熟悉 monorepo 中不熟悉的部分,而无需等待同事的回复。
创建自给自足的循环
设置 Claude 通过自动运行构建、测试和代码检查来验证自己的工作。这使得 Claude 可以更长时间地自主工作并发现自己的错误,尤其是在你要求 Claude 在编写代码之前先生成测试时效果更佳。
尽管对“JavaScript 和 TypeScript 知之甚少”,团队仍使用 Claude Code 构建了完整的 React 应用,用于可视化强化学习(RL)模型的性能和训练数据。他们让 Claude 控制从头开始编写完整的应用程序,比如一个 5000 行的 TypeScript 应用,而无需自己理解代码。这一点至关重要,因为可视化应用相对上下文较少,不需要理解整个 monorepo,从而可以快速构建原型工具,以便在训练和评估期间了解模型性能。
处理重复的重构任务
当遇到合并冲突或半复杂的文件重构时——这些任务对于编辑器宏来说太复杂,但又不足以投入大量开发精力——他们就像玩“老虎机”一样使用 Claude Code:提交当前状态,让 Claude 自主工作 30 分钟,然后要么接受解决方案,要么在不成功时重新开始。
创建持久性分析工具而非一次性笔记本
团队现在不再构建用完即弃的 Jupyter 笔记本,而是让 Claude 构建可重复使用的 React 仪表盘,这些仪表盘可以在未来的模型评估中重复使用。这很重要,因为理解 Claude 的性能是“团队最重要的事情之一”——他们需要了解模型在训练和评估期间的表现,而这“实际上并非易事,简单的工具无法从观察一个数字上升中获得太多信号”。
零依赖任务委托
对于完全不熟悉的代码库或语言中的任务,他们将整个实现委托给 Claude Code,利用其从 monorepo 中收集上下文并执行任务的能力,而无需他们参与实际的编码过程。这使得他们在自己专业领域之外也能保持生产力,而不是花时间学习新技术。
在让 Claude 工作之前保存你的状态,让它运行 30 分钟,然后要么接受结果,要么重新开始,而不是试图费力去修正。重新开始的成功率通常比试图修复 Claude 的错误要高。
必要时为了简化而打断它
在监督过程中,不要犹豫,停下来问 Claude “你为什么这么做?试试更简单的方法。” 模型默认倾向于更复杂的解决方案,但对于简化方法的请求反应良好。
产品工程团队致力于开发如 PDF 支持、引用和网页搜索等功能,这些功能将额外的知识引入 Claude 的上下文窗口。在大型、复杂的代码库中工作意味着不断遇到不熟悉的代码部分,花费大量时间来理解特定任务需要检查哪些文件,并在进行更改前建立上下文。Claude Code 通过充当向导,帮助他们理解系统架构、识别相关文件并解释复杂的交互,从而改善了这种体验。
第一步工作流规划
团队将 Claude Code 作为任何任务的“第一站”,要求它确定在进行 bug 修复、功能开发或分析时需要检查哪些文件。这取代了传统上在开始工作前手动浏览代码库和收集上下文的耗时过程。
跨代码库独立调试
团队现在有信心处理不熟悉代码库部分的 bug,而无需向他人求助。他们可以问 Claude “你觉得你能修复这个 bug 吗?我看到的行为是这样的”,并经常能立即取得进展,这在以前由于所需的时间投入是不可行的。
通过内部测试进行模型迭代测试
Claude Code 自动使用最新的研究模型快照,使其成为他们体验模型变化的主要方式。这为团队在开发周期中提供了关于模型行为变化的直接反馈,这是他们在之前的发布中从未体验过的。
消除上下文切换的开销
他们不再需要复制粘贴代码片段并将文件拖入 Claude.ai,同时还要详细解释问题,现在可以直接在 Claude Code 中提问,无需额外的上下文收集,从而显著减少了心智负担。
增强了处理不熟悉领域的信心
团队成员可以独立调试 bug 并调查不熟悉代码库中的事故。
在上下文收集中节省了大量时间
Claude Code 消除了复制粘贴代码片段和将文件拖入 Claude.ai 的开销,减轻了心智上的上下文切换负担。
加速轮岗员工上手速度
轮岗到新团队的工程师可以快速熟悉不熟悉的代码库并做出有意义的贡献,而无需与同事进行大量咨询。
提升开发者幸福感
团队报告称,随着日常工作流程中的摩擦减少,他们感到更快乐、更高效。
将其视为迭代伙伴,而非一次性解决方案
不要指望 Claude 能立即解决问题,而是把它当作一个与你一起迭代的合作者。这种方法比试图在第一次尝试中就获得完美的解决方案效果更好。
最近有很多朋友在讨论:「Deep Research 的用量是怎么算的?」 又因为目前 Plus 每个月只能用 10 次,大家都非常担心浪费。其实一句话就能总结——只要开始出现 「Starting Research」 的进度条,就算使用了一次。在进度条出现之前,怎么问都不算。下面就为大家分享一些 Deep Research 的使用流程、注意事项和提示词模板,帮助大家更好地运用这一强大的研究功能。
报告生成 研究进度条走完后,ChatGPT 会给你发送完整的报告,这标志着一次 Deep Research 流程的完成。
进度条出现后,你可以随时离开 进度条开始后,无论你是关闭窗口、刷新网页、切换到其他会话还是新开会话,都不会影响已经开始的 Deep Research 流程,它会在后台继续执行并最终生成报告。
Deep Research 可以后续追问 当报告生成结束后,如果你要继续追加信息重新生成报告,有两种选择:1). 直接提问,会使用你开始会话时选择的模型继续对话,报告内容可以作为上下文;比如说你从 GPT-4o 开始的,那么你在报告生成后,如果继续提问,实际上是 GPT-4o 基于你报告和提问内容回复,但是可能会受限于上下文长度无法完整理解报告内容;2). 重新生成新报告:Deep Research 是一次性生成的,但是你可以继续在当前会话选中「Deep research」按钮,这样可以把当前会话内容作为输入,或者把内容复制出去新开会话选中「Deep research」按钮重新开始一次新的生成。内容复制出去处理一下再生成会更好的对输入进行控制,但是麻烦一些。
你无法追加新的信息让它继续深度研究。如果你在当前会话里继续追问,后续的回答将由其他模型(如 GPT-4o)接管。 如果你对报告不满意,需要重新修改提示词再新开一次会话进行 Deep Research。
灵活切换模型 你可以先选任何模型(如 o1 pro/o1 等),再让它进行 Deep Research。若后续还打算继续追问报告内容,建议在 Deep Research 开始前就选一个更强的模型(比如 o1 pro / o1)来进行分析。
llama.cpp 令人惊叹,也是我的唯一选择。原因在于,在基本的 CPU 推理这方面,也就是使用 CPU 而不是 GPU 来产生 token 时,llama.cpp 仅需一个 C++ 工具链,不像其他大多数方案那般都需要繁琐的 Python 配置,这点让它在众多可选项中脱颖而出。在 Windows 系统上,只需要一个 5MB 大小的 llama-server.exe 文件,不需要其他运行时依赖(runtime dependency)。更重要的是,由于 EXE 和 GGUF(模型)这两个关键文件都采用内存映射方式加载,所以很有可能即便过了几十年,你也可以在未来某个版本的 Windows 上以同样的方式运行同样的 LLM,且同样不需要额外配置。
我就直说了,我喜欢它是因为官方提供的 Windows 版本编译程序用的是 w64devkit。这些人真的是有点品味的!话虽如此,如果能用 GPU 做推理的话,就别用 CPU 做推理。虽然在台式或笔记本电脑上对 10B1 左右参数的模型的效果还不错,但是速度还是会更慢。我的主要用例并不是使用 w64devkit 构建的,因为我用的是 CUDA 来推理,而这需要用到 MSVC2 工具链。为了好玩,我曾把 llama.cpp 移植到了 Windows XP 上,并且成功在一台 2008 年的笔记本电脑上运行了一个 360M 参数的模型。能够在那台老旧的笔记本上运行这项技术的感觉真的太神奇了,毕竟在那会儿,这项技术的价值恐怕得值个几十亿美元吧。
Hugging Face 可不仅仅是托管模型这么简单,就同等体量的模型而言,他们自家的 360M 模型同样异常出色。我那台赛扬处理器、1GB 内存、32 位系统的 2008 年的笔记本电脑也能用,在一些旧款树莓派上也可以跑起来。这个模型有创意、速度快、能沟通、会写诗,适合在资源有限的环境中使用,算是一个有趣的玩具。
这是另外一个 Mistral AI 模型,但其表现稍逊一筹。48B 听起来相当大,但这是一个 Mixture of Experts(MoE)模型,进行推理时只会用到 13B 的参数。这使得它非常适合在至少有 32G 内存的配置上进行 CPU 推理。该模型更像一个数据库,保留了更多的训练输入数据,但它在应用中可能不如预期,其中缘由我们很快就会说明。
接下来的一组是专为编程而训练过的「写码用」模型。具体来讲,他们进行了中间填充(fill-in-the-middle,FIM)训练,使得模型可以在现有程序内部插入代码——我稍后会解释这是什么意思。但是依我看来,这些模型不论是在代码审查还是其他指令导向的任务上都没有更出色,实际情况正好相反:FIM 训练是在基础模型上进行的,指令训练是在此基础上进行的,因此指令训练反而与 FIM 不兼容!换句话说,基础模型的 FIM 输出要明显更好,尽管你无法与这些模型进行对话。
虽然 Illume 主要是为 llama.cpp 设计的,但我也会使用不同 LLM 软件实现的 API 进行查询,且由于各个 API 之间存在不兼容性(例如一个 API 所需的参数被另一个 API 禁止),所以 Illume 的指令需要足够灵活和强大,因此指令可以设置任意的 HTTP 和 JSON 参数。Illume 并不会试图将 API 抽象化,而是会直接呈现出其较低层级的设置,所以要对远程 API 有所了解才能有效地使用它。比如说,与 llama.cpp 进行通信的「配置文件」(Profile)是长这样的:
其中 cache_prompt 是一个 llama.cpp 所特有的 JSON 参数( !: )。大多数情况下启用提示缓存(prompt cache)会更好,但可能是因为某些原因,它默认是没有启用的。其他 API 会拒绝带有此参数的请求,所以我需要将其删除或禁用。Hugging Face 的「配置文件」是这个样子的:
llama.cpp 独有一个用于 FIM 的 /infill 端点(endpoint)。该端点需要一个拥有更多元数据并进行过特定训练的模型,但是这种情况比较少见。因此,尽管 Illume 支持使用 /infill ,我还是添加了 FIM 配置,这样在读过该模型的文档,把 Illume 为该模型的行为配置好之后,我可以在任何为 FIM 训练的模型上通过正常补全 API 实现 FIM 补全,甚至是在非 llama.cpp 的 API 上也是如此。
不必只轻信我一家之言,看看大模型在赚钱方面怎么样就明白了:如果 AI 公司真的能够实现他们所宣传的生产力提升,他们就不会出售 AI 技术,反而会独自利用其技术去吞并整个软件行业。你也可以看看位于 AI 科技最前沿的公司的软件产品,和其他公司的产品一样,是同样的老旧、同样的臃肿、同样的垃圾。(而浏览这些糟糕的网站也是研究 LLM 的环节之一,一想到这里我就感觉很不爽。)
另一种方式是让大模型获得本地管理员级别处理权限,帮助我们自动处理本地数据。之前我 给你介绍过的 Open Interpreter 就属于这种方式。看起来非常方便、灵活,但 AI 代理在本地以管理员权限进行各种操作,看到所有文件。如果它被植入不安全的代码,控制你的计算机,可能导致隐私和重要数据泄露,后果严重性不言而喻。
为解决上述两种极端数据交互方式带来的问题,Claude 提供了 MCP 作为一种解决方案。作为协议,它是完全开放的。后续其他主流 AI 企业能否跟进,咱们说不准。但是现在就可以用 Claude 来体验一下 MCP 带来的数据交互好处。
我其实对 Hugo 不熟,不知道这算不算重新发明了一遍轮子。但我搜索「如何在 github 上,用 hugo 架设自己的 blog?」时,搜到的教程,都需要用户在自己的电脑上,安装运行各种 git 和 hugo 的相关命令,感觉对新手并不友好。所以,我试着写了一个流程,让新人完全只需要在网页浏览器上操作,就能快速生成自己的 blog 网站。
在 TimeLapseCam 中打开 REST API 之后,就能用浏览器打开 http://192.168.2.182:8085/rest,看到如何使用 API:
REST API v1: GET /1/ctrl/status: Get current state: [stopped/running] GET /1/ctrl/start: Start recording GET /1/ctrl/stop: Stop recording GET /1/ctrl/param: Get parameter GET /1/device/battery: Get battery percentage GET /1/current/img: Current / last recorded image GET /1/current/imgcount: Image count GET /1/current/lastimg: Last image: Name, Timestamp and URL GET /1/img/list: List image folders GET /1/img/listhtml: user clickable HTML page GET /1/img//list: List folder / images GET /1/img///list: List folder / images GET /1/img//…/: Download image
Stirling PDF 是一站式的 PDF 编辑工具,让用户能对 PDF 文件进行各种编辑操作,包括分割、合并、转换、重新组合、新增影像、旋转、压缩等等,特色是免费、开源〔GitHub〕,过程中文件只会存在用户的设备上,若在处理时有暂存于服务器的内容在下载后会即时从服务器删除,不会记录保存或追踪任何资料,相较于在线工具来说是更安全、隐私的解决方案。
1 Locally hosted web application that allows you to perform various operations on PDF files – Stirling-Tools/Stirling-PDF
Stirling PDF 提供多元的 PDF 编辑功能,涵盖文件组织、格式转换、安全性、检视与编辑等工具,满足各类文件处理需求,用户无需额外下载、安装软件,只要通过浏览器即可进行操作,Stirling PDF 有中文在内等多国语言界面〔在我写这篇文章时中文字串翻译率已达 93%〕,进入网站、找到对应的功能后就能直接进行编辑。
这项服务目前可以做到的功能包括:
1. 文件组织
2. 格式转换
3. 签名与安全性
4. 检视与编辑
5. 进阶功能
顺带一提,Stirling PDF 还有提供 Windows 版本,可以在没有连上网络的情况下使用,如果有兴趣的朋友可以在 GitHub 找到下载链接,原则上两者功能差不多,无论在线版或 Windows应用程序都不用付费、也无广告干扰。
几乎可以在任何有 Python 环境的地方运行,还支持 Docker 托管,以及 windows 系统下的单可执行程序,甚至可以在 android 中运行。虽然运行很容易,但我不敢说它简单易用。
Portable file server with accelerated resumable uploads, dedup, WebDAV, FTP, TFTP, zeroconf, media indexer, thumbnails++ all in one file, no deps – 9001/copyparty
⏩ Continue is the leading open-source AI code assistant. You can connect any models and any context to build custom autocomplete and chat experiences inside VS Code and JetBrains – continuedev/cont…