These Democrats Could Hold the Key to Ending the Shutdown
© Eric Lee for The New York Times
© Eric Lee for The New York Times
© Tierney L. Cross/The New York Times
The original 128K Mac from 1984 came with a single Motorola 68000 processor running at 8 MHz that could only run one app at a time. Yet today’s Macs come with multiple CPU cores that can comfortably run several substantial apps simultaneously, while running a Time Machine backup and other tasks in the background. This brief history outlines the journey between them.
A processor with a single core and no support for multi-tasking runs one sequence of instructions at a time. When those call for an operating system function to be performed, the running app is interrupted to hand control over to the system, and once that has completed, control is passed back to the app. That’s what the first Macs did until Andy Hertzfeld wrote Switcher, released by Apple in April 1985. This allowed the user to switch between running more than one app, but was still limited to running just one of them at a time.
Over the next couple of years, some third-party utilities were produced to go further than Switcher, but it wasn’t until 1987 that MultiFinder replaced Switcher, and was integrated into System 7 in 1991. Developed by Erich Ringewald and Phil Goldman, this brought cooperative multitasking, which was to become the mainstay of classic Mac OS.
In computers with a single processor core, multitasking is a way of cheating to give the impression that the processor is doing several things at once, when in fact all it’s doing is switching rapidly between two or more different programs. There are two fundamental models for doing that:
When a processor switches from one task to the next, the current task state must be saved so it can be resumed later. Once that’s complete, the next task is loaded to complete the context switch. That incurs overhead, both in terms of processing and in memory storage, which are less when switching between lightweight tasks. Different strategies have been adopted to determine the optimum size of tasks and overhead imposed by context switching, and terminology differs between them, variously using words such as processes, threads and even fibres, which can prove thoroughly confusing.
Classic Mac OS thus has a Process Manager that launches apps in cooperative multitasking. This works well much of the time, but lets badly behaved tasks hog the processor and block other tasks from getting their fair share. It’s greatly aided by the main event loop at the heart of Mac apps that waits for control input to direct the app to perform work for the user. But when an app charges off to spend many seconds tackling a demanding task without polling its main event loop, that app could lock the user out for what seems like an age.
In February 1988 Apple released the first Unix for Macintosh, A/UX, which came with preemptive multitasking. That was added to Mac OS in 1996 in System 7.5.3, in Multiprocessing Services, and further enhanced in Mac OS 8.6 three years later. Cooperative multitasking was also supported by the Thread Manager.
In 2000 Apple’s hardware and software changed radically. Its first Macs with dual processors (apart from the Power Mac 9600/200MP that was available briefly in 1997) came in PowerPC 7400 (G4) chips in Power Mac G4 desktop systems, and Mac OS X brought several types of thread that could be used to manage processing on multiple processors or CPU cores, together with preemptive multitasking. Thread types include low-level Mach threads, higher-level POSIX threads or Pthreads that replaced Multiprocessing Services, Java Threads, Cocoa’s NSThreads, and cooperatively scheduled threads using the Carbon Thread Manager. The following diagram summarises Apple’s current terminology.
In most cases, we’re considering applications with a GUI, normally run from a bundle structure. These can in turn run their own code, such as privileged helper apps used to perform work that requires elevated privileges. In recent years, there has been a proliferation of additional executable code associated with many apps.
When that app is run, there’s a single runtime instance created from its single executable code, and given its own virtual memory and access to system resources that it needs. This is a process, and listed as such in Activity Monitor, for example.
Each process has a main thread, a single flow of code execution, and may create additional threads, perhaps to run in the background. Threads don’t get their own virtual memory, but share that allocated to the process, although they have their own stack. On Apple silicon Macs they’re easy to tell apart as they can only run on a single core, although they may be moved between cores, sometimes rapidly.
Within each thread are individual tasks, each a quantity of work to be performed. These can be brief sections of code and are more interdependent than threads. They’re often divided into synchronous and asynchronous tasks, depending on whether they need to be run as part of a strict sequence.
In 2005 the Power Mac G5 was the first Mac to use dual-core PowerPC G5 processors, then the iMac 17-inch of the following year used Apple’s first Intel Core Duo processor with two cores.
In 2009 Mac OS X 10.6 Snow Leopard introduced a new dispatcher, named Grand Central Dispatch (GCD) after Grand Central Terminal in New York City, and that was enhanced in macOS Sierra a decade later. More recently it has been referred to simply as Dispatch.
At its heart, GCD is a dispatcher managing queues of tasks, activating those that need most to be run, and leaving the less pressing to wait a bit longer. It has its own queues, as well as those assembled by apps. Some are run as simple queues with a first in first out rule, others using sophisticated heuristics to determine relative priorities. There’s a detailed account of GCD internals in Jonathan Levin’s book *OS Internals volume 1, and Apple’s current developer documentation is here.
GCD was introduced for Macs with multiple identical cores, to support their symmetric multiprocessing (SMP), and with the release of the first Apple silicon Macs in November 2020 it has managed queues of threads to be dispatched for execution on two CPU core types, Performance and Efficiency. Core allocation is now managed according to the Quality of Service (QoS) assigned to each thread. When used on SMP processors with no contention for core availability, QoS has limited effects on thread performance, but performance on P and E cores may differ by a factor of 10.
Over the last 41 years, macOS has gained thorough support for getting the best performance from multiple tasks, threads, and processes in chips that contain up to 32 CPU cores of two types – a far cry from that single 68000 processor.
电影《点球成金》讲了一个真实的故事:奥克兰运动家队是美国职业棒球大联盟 MLB 里经济实力很弱的一支队伍,布拉德•皮特饰演的主角比利是这支球队的教练,经历了一场惨败之后,奥克兰运动家队的三名主力被重金挖走,球队前途渺茫。
但是在大数据技术的帮助下,比利不再追求当红球星,而是挖掘在数学模型下具有巨大潜力的球员,最终这支平民队伍在 2002 年赛季拿到了打破 MLB 纪录的 20 连胜,一度成为联名豪强。
也就是说,合理运用技术能力,能够在看重资金实力的顶级职业联赛里获得更多胜机。
▲ 《点球成金》剧照,经济学硕士彼得利用大数据帮助比尔挖掘潜力球员
类似的事情,正发生在网球运动领域。
2025 年度比利·简·金杯(Billie Jean King Cup)总决赛在深圳湾体育中心开赛,这是该全球顶级女子网球团体赛事首次落户中国。作为比利·简·金杯的全球技术与创新合作伙伴,微软携 Match Insights(国际版)解决方案亮相赛场。
微软基于 Azure 云平台和数据分析技术,量身开发了 Match Insights(国际版)解决方案,可实时处理海量数据,生成统一、精准的战术洞察,帮助教练与运动员在极短时间内做出科学决策,实现从数据到行动的高效衔接。
每场比赛期间,微软智能云 Azure 会处理来自多个数据源的超过 30 万个数据点,并即时生成 1500 余种独特的统计组合。同时,人工智能模型对这些数据进行实时分析,提炼出关键洞察,帮助教练和球员灵活调整战术。该系统还能深入挖掘球员行为、击球选择和局势变化,生成如回合球效率、发球得分率等深度分析数据,为战术制定提供有力支撑。
今年,微软把 Microsoft Copilot 副驾驶的 AI 搜索能力整合进了 ,进一步提升系统的交互智能与全球适配性。比如借助 Microsoft Copilot 副驾驶的多语言自然语义处理能力,运动员和教练可直接使用母语实时提问,例如:「对手在第二盘的反手失误率如何?」或「我在关键分上的发球偏好有哪些?」。 Match Insights(国际版)可以即时解析问题,从海量数据中提取洞察,生成个性化的战术建议。
在 2024 年,比利·简·金杯斯洛伐克队队员Rebecca Šramková 说:
赛前,我预计对手会采用快节奏打法,微软 Match Insights(国际版)提供的所有数据与洞察都印证了这一点。我据此调整了自己的战术,最终赢得了这场比赛。Match Insights(国际版)帮助我分析对手并为每场比赛完善我的策略,使我们的队伍在比赛准备和决策方面具有优势。
在 2025 年度比利·简·金杯(Billie Jean King Cup)赛事期间,我们和微软大中华区首席运营官 Chris Tao,国际网球联合会技术负责人 Jamie Capel-Davies,微软全球战略合作伙伴负责人 Monica Robbins 聊了聊 AI 将会如何影响网球这项运动,以下是对话实录。
Q:更加精细的数据分析和 AI 指导在多大程度上可以提高比利·简·金杯运动员的胜率?
Jamie Capel-Davies:这是个很好的问题。我认为 AI 确实在部分团队和技术层面发挥了作用,帮助他们获得了有价值的洞察。
比利简金杯中,大家都围绕「赢得比赛」这一共同目标努力,所以我们能够真正有所作为。我个人印象最深的是去年有一场比赛,一位球员凭借胜利赢得了参赛资格,而我们所提供的,就是为这种关键性的时刻,提供差异化支持。我认为不同团队对 AI 的使用程度和方式各不相同,而且比赛结果还受到很多其他因素的影响。
▲ 微软大中华区首席运营官 Chris Tao
Q:目前,数据和AI主要为人类教练提供辅助功能。那么未来,AI 是否真的可以取代人类教练?
Monica Robbins:不是取代人类,实际上是赋能人类。就像你在体育领域看到的那样,AI 的作用是帮助个人在他们所做的事情中取得更好的表现。比如网球比赛中的司线判罚,确实可以完全自动化,但整个过程中仍然需要人的参与。AI 的真正价值在于增强人类专注于关键决策的能力。所以我想对于人类教练来说,AI 不是为了取代他们,而是为了通过更多方式赋予他们力量。
Jamie Capel-Davies:是的,我完全同意。AI 确实带来了很多价值,但有些事情仍然需要人类的参与。AI 可以处理纯粹且客观的数据,但在网球领域,教练的很多工作在短期内是人工智能难以替代的。我们真正感到兴奋的是看到这项技术正在更广泛地应用,它可以帮助提升比赛的公平性。我们拥有大量可用的数据和各种类型的系统,而且这些技术变得更便宜、更易获取,因此在更多比赛中都能提供有价值的洞察。
Chris Tao:我想说的是,微软在人工智能与人类协作方面的基本理念、目标是创造出能够以更好方式帮助人类的 AI 技术,从而提升整体生产力。我们始终认为人类应该处于主导地位,而 AI 则是持续支持人类的、聪明的「Copilot 副驾驶」。最终,我们希望 AI 不仅能在教练领域提供更好的建议,还能在教育等其他领域发挥作用。我们也希望 AI 能在不同文化背景下都表现出色,成为真正意义上的助理教练,具备应对未知问题和不断进化的能力。
▲ 微软全球战略合作伙伴负责人 Monica Robbins
Q:在智能运动领域,AI 已经彻底改变了国际象棋和围棋,模仿和学习 AI 可以带来更高的胜率。然而,有人认为,由于存在最优解,AI 介入的运动可能会失去创造性和观赏价值。网球会出现这种情况吗?
Jamie Capel-Davies:我不这么认为。这确实是个值得探讨的问题,不过我自己不下棋,所以无法完全比较。但我觉得 AI 的加入其实是为运动增添了新的维度。虽然 AI 有时会击败人类,而且这种情况越来越常见,但真正有趣的是AI 与人类之间的互动。所谓的「最优解」反而让比赛变得更有看头。网球本身就包含很多要素,比如技术、身体素质、战术等,是一个高度多维的运动。我们尝试用 AI 来强化其中的战术和战略部分——这是非常关键的一环,但也只是众多维度之一。
Chris Tao:我补充一点。在网球领域,我们已经积累了多年成熟的经验,尤其是在数据分析的支持下,我们可以更好地分配资源。你提到一个很重要的观点:在一个高度竞争的环境中,人类应该如何定位自己?是“人类+AI”的协作模式,还是坚持人类主导?你可能还记得上个月在中国举办的 2025 世界机器人大会,那场展览真的很精彩。它促使我们重新思考:如何借助 AI 增强人类能力,而不是让 AI 取代人类在关键领域的作用。
Jamie Capel-Davies:如果我们进一步展开这个话题,我认为 AI 还有潜力帮助球员更好地参与比赛、减少受伤风险。
Monica Robbins:是的,这正是 AI 的核心价值所在。当我们谈论 AI 时,它是在赋能各类应用的负责人,而不是取代他们。我常常会想到一个例子:AI 可以让信息「活」起来,帮助运动员更好地理解自身表现,从而发挥最大潜力。比如从人体力学的角度来看,运动员在特定项目中往往遵循相似的运动原理。而借助 AI,他们可以发现,通过对身体姿态的微调,自己可以跑得更快、跳得更高,或者更高效地完成动作。所以再次强调,这不是关于替代,而是关于提供工具,帮助他们实现更好的自我表现。这也是我们真正关注的方向。
▲ 国际网球联合会技术负责人 Jamie Capel-Davies
Q:AI 或微软的机器学习系统是如何挖掘出传统系统无法识别的数据维度?微软的技术在哪些方面可以补足传统系统的不足吗?
Monica Robbins:是的,我可以先分享一些想法,然后 Jamie 可以补充。从根本上讲,这个问题回到了「数据如何实现实时统一」的能力上。传统系统通常是在赛后进行分析,也就是说,你只能在比赛结束后回顾数据,制定策略。而微软的解决方案实现了实时数据处理,这意味着你可以在比赛进行过程中就获取关键洞察,并据此做出即时调整,而不必等到下一场比赛。这是一个非常重大的转变。我们在本次锦标赛中引入的一些新功能,正是围绕如何更深入地理解比赛动态展开的。现在,运动员甚至可以通过自然语言提示在比赛期间获取实时建议。如果我是网球运动员,我可以根据AI的反馈调整我的发球策略,这在过去是无法实现的。
Jamie Capel-Davies:使用 Azure 的一个关键优势在于系统的可扩展性。我们可以根据比赛的节奏和安排灵活调整资源配置。比如本周有些比赛日安排了两场比赛,有些只有一场,我们的系统可以根据实际情况动态扩容,同时保持成本效益。此外,微软的 AI 平台具备模型迭代和切换能力。我们可以根据反馈不断优化模型,并在不同模型之间灵活切换。我们最近就做过一次模型升级,结果显示新模型的反馈质量明显优于之前的版本。这种持续优化的能力,是传统系统难以比拟的。
▲ Billie Jean King,单打最高世界排名第一,12 座大满贯得主,国际网球名人堂成员
Q:有人使用 AI 来帮助策略,而有人不使用,那么对于这种情况导致的不公平,你们会如何回答呢?
Monica Robbins:我们合作的每个组织都肯定会思考的一个问题是,他们如何以完全公平的方式提供解决方案。其中一件事是,现在AI正变得更容易被更广泛的受众使用。实际上,在某些方面,它确实带来了更多的获取机会。但当我们与潜在客户或不同组织合作时,比如与比利·简·金杯合作,关键在于我们如何确保所有团队都能获取相关信息,并确保他们能够充分利用这些信息。确实,像任何新技术一样,总会有一些早期采用者,但这也是推动技术普及的重要力量。我们希望通过这种方式,逐步实现更广泛的技术覆盖。
Chris Tao:是的,这项技术实际上已经在一定程度上缓解了原本可能加剧的不公平问题。过去,资源获取的不平衡确实让一些团队或教练处于劣势,但现在我们正努力让 AI 技术变得更加普及和易用。我们的目标是确保尽可能多的人都能使用这项技术,而不仅仅是少数拥有高端设备或资源的专业团队,比如那些顶级教练。过去可能需要依赖复杂的系统才能进行数据分析,而现在,更多人可以通过更便捷的方式获得同样强大的支持。这意味着,AI 不仅提升了专业教练的能力,也为更多基层用户打开了可能性。我们希望通过技术的普及,真正实现更公平、更广泛的赋能。
Jamie Capel-Davies:我们所做的是与所有团队一起开展培训,以此来帮助降低风险和解决问题,而不是做其他事情。正如 Monica 提到的,不同团队的使用方式可能不同,但我们努力确保每个团队都有机会尝试并充分利用这项技术。微软其实还有一个专门的部门,会对产品进行严格的审查,确保在推出时符合伦理和公平的使用标准。
▲ 《点球成金》剧照
回到开头所说的《点球成金》电影,大数据技术确实在一段时间里帮助奥克兰运动家队获得了极强的竞争力,但是这项技术的门槛没有想象中那么高,于是其他球队也纷纷跟进,最终抹平了技术能力的差距。
实际上到现在来看,无论是 MLB,还是 NBA,或者足球里的五大联赛,一支球队的技术分析和医疗康复能力,很大程度上决定了这支球队的上限,也决定了球员的职业生命。
在科学的比赛建议,以及更好的医疗康复关照下,像刚刚过了 40 岁生日的莫德里奇,或者 40.5 岁的 C 罗,依旧还保持着不错的竞技状态,能够在顶级赛事中发挥巨大作用。
技术能力在体育运动里一直都是你追我赶,先到先得,并且具备非常大的杠杆效应,而在微观到具体的运动员身上,AI 等技术带来的,不仅是一段时间的提升,也可能是整个职业生涯的延长。
#欢迎关注爱范儿官方微信公众号:爱范儿(微信号:ifanr),更多精彩内容第一时间为您奉上。
看到网友的一篇帖子:
在我二十歲以前,我是一個可以穿牛仔褲睡覺的人。我可以在,今日看起來實在不太舒適的環境下睡覺,不會特別覺得怎麼樣;舉例來說,那時我的床板上鋪的是幾張囤起來準備做模型用的紙板,冬天時實在被床板沁上來的寒意冷得受不了,才去買薄床墊。
那時的我是非常荒廢「感覺」的,我不僅和內在的感覺疏離,也很鈍於外在的感覺,我認為那是我可以穿著牛仔褲睡覺的原因。現在的我,即使穿著柔軟的睡褲,有時候還嫌壓到衣褶子不舒服,差不多是個豌豆公主。
就算現在的我想越過時空去對過去的我表達憐惜,那時的我也一定感覺不到吧。
回頭一看,真是跋涉了好長的路,來到這裡。#
这样的视角,我还是第一次见,于是感到很惊讶。以往看到过很多描述,和年轻时可以随意风餐露宿的状态的对比,最终都是自嘲几句如今娇气了。而这一篇,则认为从前的状态,是一种「不重视感觉」?与之相对的,如今的豌豆公主,是一种重视感觉后的进步?or 至少是进步的代价?
我提出这样的疑问。对方也是日常在 follow 的,多数三观比较一致的网友,于是回复的氛围也很融洽。对方的回复:
的確也有想過自己是不是變得嬌貴了,不過畢竟自己的事情自己最清楚;那時發生了一些大大小小的事,年輕時的我很自己為可以用理智壓制自己的一切,卻在重要關頭發現身體與意志不統合,情緒會逃出來控制身體。
至於豌豆公主是好是壞,我倒沒有想評價,而是接受。頂多就是,感謝現在的我有一些外在條件讓我可以是豌豆公主吧。
其它有着共鸣的人也来讨论:
這樣的狀態是一種進步嗎?我覺得我不會用進步形容它。比較像是在爬一座山,一開始在山腳時,我的身心靈狀態,和登上山後,身心靈狀態已經皆然不同了。
以前的我因為一些事情,常常是伴著淚水入睡的,或是餓著肚子入睡的。從現在往回看,那時候我的身心靈是身.心.靈,三者分開,處於一種先各自顧好自己,無暇顧及其他的狀態。
后面更多地在交流,重视感觉的重要性,和渐渐懂得要重视感觉的心路历程……
我当然赞同重视感觉的重要性;但我大概明白,这个思路的 bug 在哪里。把风餐露宿的青春,和不重视感觉的青春,过度地绑定在一起,以致于前者连带着一同被否定。以及,在发言者之后的人生历程中,那些风餐露宿,并不是什么需要被重视、发展的能力,所以也就无妨被顺带抛弃。抛弃时甚至不会想着,要不要捡回来珍念一下。
发言的人,日常的生活方式、和在其它维度的一些倾向,也符合我的预期。所以也只是大家对不同东西的权重不同吧。并没有否定对方的意思;只是这样的思路我第一次见,记录一下。
As the world exits the COVID-19 pandemic, more and more companies are pushing for workers to “Return to Office”. Many are also expecting full-time in-person work and dismisses remote work (or Work From Home, a problematic term that I will expand upon later) as “not real work”. There have even been instances where companies that once promised remote work will be implemented permanently turning its back on workers that have structured their life accordingly and forcing them to come back to the office instead. This is done even in companies that according to their own statistics that remote work is more productive.
Opponents of remote work often use the term “WFH”, or Work from Home to describe remote work, and it is often described as a perk. They often believe that working from the office is the only way to do real work.
This is a clear case of the Principal-Agent problem. The managers of the company are supposed to be working for the benefits of the shareholders and maximizing the profit potential. Instead, managers fall to their personal crave for the sense of control. I know someone that manages his team from Toronto that he forces to go into the New York office everyday. After all, how can they know you are doing real work unless they get to force you to commute 2 hours each way? Knowing that someone was forced to lose sleep, gain anxiety, be more stressed, is simply an irreplaceable joy that remote work can never offer. #slam_dunk_argument
Even if we ignore the Principal-Agent problem and pretend there is no personal motivation for the managers making such a decision, and it was purely made for the benefits of the business, it makes no sense.
Companies usually pay their workers something called a salary, along with possibility other perks. All of these compensation have a singular purpose, make the employee happy enough to keep doing the job. If a company can pay someone $5k a month to do the job, chances are they won’t find someone at $10k a month if they deliver the same quality of products. It is the same theme as the Murphy’s law of combat, “Remember, your weapons are made by the lowest bidder”. Considering this, allowing workers more freedom in deciding where they want to live would be an obvious way of improving their happiness. A happier worker = A more productive worker, so a manager who is forcing their team to go into a shoebox office is engaged in active sabotage against the company interest.
The auto plants of Detroit shutdown because of cheaper costs of producing in Japan. Outsourcing labor is just one of the many ways of remote work, but somehow with the advent of new technology that allows for a programmer to code from anywhere in the world, they are somehow not doing “real work” unless they go to a desk that has the same Wi-Fi connection as any other Starbucks?
As a woman, the traditional office environment can often be actively hostile. From the increased potential of physical sexual assault due literally being in the same physical location, to the air-con temperature that is often too cold for women’s comfort, it is simply a space that is not friendly, and therefore reduces the productivity. Many woman are also expected to bear household chores, and there are way more stay-at-home moms compared to dads. The inability to participate in the working world from your kitchen counter has been a huge career barrier for many women.
The gender pay gap exists for a reason, prejudice. However, I argue the solution is simple, let capitalism take over. If a woman’s work quality is the same as their male counterpart, fire the guy and hire another woman. Gender pay gap exists? Good! Exploit it!
Societal attitudes towards work changes depending on the era. When computer programming first started, newspapers pushed that women are more suited to do the job, then thought as mere clerical work, because women are more “careful”. It was only after men realized the job was important that the prejudice against female coders started and programming became a male dominated domain. This shows that societal attitudes towards work and its relationship with gender has nothing to do with objective reality.
Different societies also have different attitudes towards work. In this video, the Japanese salaried worker spends most of his days travelling across Tokyo to meet with clients face to face to resolve matters that can often be done on the phone, because Japanese culture believes face-to-face meetings to be more “polite”. He also arrived at the office 40 mins before the official start time and had work even after arriving at home after 8 pm. Japan is not known for creating the biggest startups, perhaps for a reason. After all, how much brain space do you really have for creativity after such a long day?
Japanese work culture is also known to be very prejudiced against women, who often have no real path towards career success and are often expected to marry, baby, and quit. How far can an economy go that ignores half of its highly educated population?
By not opening jobs that can done remotely to remote workers, a company ignores the entire global population, apart from wherever they happen to have an office at. Remote work is not “Work from Home”, which usually leads to the logical fallacy of “You are at home for the entire day, therefore you are not working, therefore WFH is not working, therefore remote work does not work”. Remote work is just work in a different environment, one that can be adjusted to fit the individual needs much better than a standardized office environment, one that boosts productivity, and eventually revenue.
Ignoring women means ignoring 50% of the potential talent pool, mandating in-person work means ignoring 99.99% of the potential talent pool. Remote work is simply, work. An employee of any gender is simply, an employee.
Soviet Union is dead, but capitalism has been defeated.
All hail prejudice.
I shared my excitement about the PTE test result in the previous post. In this post, I will detail the English-speaking skills I learned during the three-month learning journey, which specifically meet the PTE test criteria.
Let’s take a look at the two key criteria in the PTE’s speaking component: Pronunciation and Fluency.
Based on these criteria, I would like to highlight these key points:
As we can see, the PTE’s test criteria clearly show concepts we must fully understand and perfectly present if we want to achieve a higher score. In the following text, I will present my comprehension of these concepts, supported by related online resources.
In everyday conversations, sightly mispronounced words often do not significantly disrupt the flow of our discussion. But thanks to modern technology, PTE’s scoring is based on algorithms and is implemented by computers, which can easily detect each mispronunciation. Therefore, the ability to pronounce words clearly and accurately is crucial.
I have tried numerous methods to improve my pronunciation and reduce Chinese accent including speaking loudly, having more emotion, and directly imitating local accents. However, it didn’t work as expected, it did not meet my expectation, resulting in a low score in PTE practice.
Changes occurred the time I met Sun’s tutorials and BBC Learning English collection on YouTube. These pronunciation videos elaborate on vowel and consonant details, with vivid body language and emotion.
As non-native speakers who want to pronounce concisely, we must focus on these particular points:
Mouth Shape
We can try to imitate the mouth shape that vowels and consonants request. For example:
Tongue Position
We should also pay attention to the tongue position. For example:
Breath
We should also carefully control our breath, ensuring vowels and consonants are presented appropriately. For example:
Focusing on these points helps us ensure our study paths are on the right track, and consistently improve our pronunciation. In addition, there are two tips:
Each Chinese character has only one syllable, whereas English words typically consist of two or more syllables.
For example, the word water consists of two syllables: wa-ter, and phenomenon consists of five syllables: phe-nom-e-non. It depends on how many vowel sounds the word includes.
Furthermore, an English word consisting of two or more syllables includes both stressed syllables and unstressed syllables. These are indicated by the phonetic symbols found in dictionaries.
For example, the phonetic symbol of agri-cul-ture is /ˈæɡrɪ-kʌl-tʃər/, we can see the stress mark /'/ is placed in the first syllable /ˈæɡrɪ/, which known as a stressed syllable, while others are unstressed syllables.
An interesting rule to note is that the stressed syllable can be vary within the same word depending on its function in a sentence. For example:
What should we do?
Pronounce each syllable with different efforts:
When training pronunciation, I strongly recommend exaggerating these nuances to ensure we are on the right track and fully comprehend this concept. Eventually, it should sound natural and require less effort.
Properly presenting word stress is key to making our speech more like English, and it can significantly help in shedding “Chinglish” tendencies.
To meet this criteria, there are two concepts we should understand: Content/Grammar Words and Stressed Words.
In the English world, there are two types of words within a sentence: Content words and Grammar words.
In the sentence “I would like to read books,” the content words are I, like, read and books, they should be pronounced clearly and accurately, while would and to are grammar words, and they should be pronounced more softly than those content words.
The second point is to decide which words should be stressed. This is an easy-to-understand concept but hard to implement when we are facing a complex sentence. I will demonstrate it through Chinese examples:
We stress some special words in our mother tongue subconsciously, furthermore, and this often influence the meaning.
For instance, we can express “There are beautiful flowers in the park.” in these different ways:
I suggest following general rules to avoid the potential risk of making mistakes and mispronunciation because the given text is unpredictable when we are sitting at the PTE test. Here are two steps for consideration:
1. Understanding the text.
Rather than speaking without consideration and comprehension, we should first grasp what ideas the writer attempting to convey before we open our mouths. Furthermore, analyzing the elements and structure of the sentence is crucial, including subjects, verbs, objects, content words, grammar words, and clauses.
2. Marking stressed words and unstressed words.
Generally, we stress one word in a phrase, choosing from a range of words, including objects, gerunds, passive verbs, adjectives, and adverbs. Below are several examples from an actual test:
Globalisation refers to a set of changes rather than a single change.
Stress what authors attempt to emphasize. In this case, the author is declaring it is a set, not a single change.
You will be introduced briefly to the discipline of child psychology.
We always stress adjectives and adverbs that modify a noun. If they are connected, stress the first one. Similarly, when facing a compound noun, we stress the first noun generally.
Although choosing the stressed words is subjective, they should be chosen from an appropriate scope that I mentioned before.
These two concepts were the most interesting part of my learning journey. They make our English speaking vivid and dynamic.
Some voices can be transformed in specific circumstances. Below are several examples:
There are lots of variations in pronunciation that we need to learn and practice. While this might feel overwhelming for some beginners, it is a vital part of speaking like a native and sounding natural. Keep learning from online resources and practice consistently until you feel comfortable.
Some voices can be dropped in specific circumstances. Below are several examples:
These two concepts are related to the term “Thought groups.” When speaking English, we always separate the sentences into several groups by their meanings, emotions, structures or lengths. Here is an example from the real test:
In particular, we break sentences down before prepositions such as “of”, “in” and “that.” Importantly, we should NEVER separate compound words like “the English Revolution.”
Furthermore, I suggest breaking the sentence into smaller fragments for practice, like this:
Many papers / you write in college / will require you / to include quotes / from one or more sources.
However, the PTE test would perfer a longer phrase, so I suggest that each group should have 4 to 7 words.
Now we know what is the term “Thought groups” and how to divide a sentence, the next step is to learn how to present it well. This related to the term ‘intonation and it means words pronounced in a high or low pitch accordingly and intermittently.
Intonation can bring rhythm to speaking, however, it is hard to handle and can cause trouble easily for beginners.
What should we do?
PTE test can detect any hesitation or mispronunciation which can negatively influence our final score, especially in the Read Aloud and Repeat Sentence module.
Despite numerous challenges on test day, such as being disrupted by other test-takers or encountering unfamiliar words, I strongly recommend speaking slowly and confidently to avoid potential risks and maintain fluency.
This strategy is crucial: when we face a word or phrase that is difficult to express and may cause hesitations unavoidably, this may affect our scores in both Pronunciation and Fluency. However, if we express these challenging words slowly and confidently, maintaining a natural flow, it might primarily affect our Pronunciation score.
This is why I strongly advocate for speaking confidently, even when making mistakes.
This article discusses the knowledge I gained on my English learning journey, including methods to improve pronunciation and an understanding of the PTE speaking module criteria.
Additionally, I’ve decided to update posts in English from now on. It may contain numerous grammatical errors, awkward phrasing and word-choice issues, it’s still a necessary step forward. ‘Practice makes perfect’ is the key lesson from this journey.
想成為科學化的健身人,但每次打開論文都只會看結果、看不懂數據嗎?其實結果後面的統計學才是看懂文獻的關鍵。(圖文版:@vin_training)
科學化的健身是現在的趨勢,不過僅僅會去搜尋論文然後看懂標題和結論,就像是去書店看了封底的大綱就當作已看過這本書一樣,錯過了真正能讓你思考和學習的內容。研究結果只是一系列實驗和分析的最後一步,想要真正讓一篇論文擴展你對健身科學的理解,就需要去讀背後的過程。其中,實驗數據的統計就是相當重要的一塊,尤其健身相關實驗通常為期較短、受試者人數較少,所以對數據的解讀的不同就很容易影響對結果的判讀。
本文是零基礎都能輕鬆入門的統計學介紹,只介紹觀念而不會提及任何數學公式,且會以一篇真正的健身論文為例,帶大家看一些基礎的統計觀念。
本文以 Evenly Distributed Protein Intake over 3 Meals Augments Resistance Exercise–Induced Muscle Hypertrophy in Healthy Young Men 作為介紹基礎統計概念的例子。本研究探討「把蛋白質平均分配到每一餐,會不會更能增加肌力和肌肥大」,直接講結論:在 12 週的飲食控制+重訓後,平均分配蛋白質的人比不平均分配的人,增加更多的瘦組織與更多的肌力,但都未達「統計上的顯著」。等等就來介紹這句話的涵義,及論文中其他常見的數據。
如果你被告知,這裡有一群平均年齡 20 歲的人,那你覺得這群人是全都大學生、還是一群家長和他們的國小小孩呢?
光靠「平均年齡」是無法讓你回答上面的問題的,此時就需要知道這群人的年齡分佈。如果大家都差不多是 20 歲,那大家的年齡分佈就很緊密;如果有些人 16 歲、有些人 30 歲、有些人 8 歲⋯⋯那年齡分佈就很離散。讓我們能得知離散程度的數據即是「標準誤 standard error, SE」,如果 SE 越大,代表越離散,反之則越緊密。(註:有時統計是用「標準差 standard deviation, SD 」而非 SE,這裡就不細講它們的差別了 ,只要知道它們都是用來描述離散程度就好)
我們直接進入研究例子:
(請看圖二)mean 就是「平均」的意思,所以本篇論文一開始就提供受試者的基本數據:平均年齡是 20.8 歲,而 ±0.4 歲的 0.4 就是 SE 。SE = 0.4 歲算是相當小,所以代表他們研究的是一群 20 歲左右的年輕人,而這就呼應了標題的「young men」。
而若一個實驗結果的 SE 很大,那就代表實驗者的改變存在很大的個體差異。例如:如果一個飲食方法讓實驗者半年瘦了 5 ± 4公斤,代表有些人瘦不到 1 公斤、有些人瘦超過 9 公斤,那我們就會推論這個飲食法不是對每個人都很有效的。
接著來看研究結果(圖三)。12 週的飲食控制+重訓後,平均分配蛋白質到每一餐的受測者增加了 2.5 ±0.3 公斤的瘦組織重(油脂以外的體重,包含肌肉),而不平均分配蛋白質的受測者則增加了 1.8 ±0.3 公斤。對 1.8 和 2.5 來說,0.3 並不算大,所以可以推測這兩組幾乎所有的實驗者都確實比實驗前長了更多肌肉。而當我們想比較哪一組增肌更多時,雖然乍看之下前者的瘦組織增加幅度更高,不過僅從這些數據其實難以推斷前者是不是真的比後者增加比較多的瘦組織。
雖然概念不完全一樣,但可以這樣思考:假設一個賽車手在同一個賽道上,分別用兩台不同廠牌的賽車跑計時賽。第一台車跑了 10 分鐘,第二台車則跑了 10.2 分鐘。光靠這個數據,你很難確定哪台賽車的性能比較好,因為第二次跑比較慢可能是第二台性能確實較差,也可能是賽車手剛好表現較差。同樣的,只知道一組人增加 2.5 公斤、另一組人增加 1.8 公斤,也很難判斷這是實際存在的效果差別,還是「剛好而已」。
此時,就要去看比較兩組數據的「p 值」為何。再看回圖三,反白的字後面有「p = 0.06」,這代表雖然第一組比第二組看似增加更多瘦組織,但這個差異有 6%的機率「只是剛好而已」,而我們通常會覺得 6%的機率已經足夠高了,所以認為兩組其實沒有差別。這就叫「差異未達統計上的顯著」。
舉一個比較貼切的例子:假設六年甲班和六年乙班各有 40 位學生,而這兩班同座號的學生身高都一樣(例如:兩班的 1 號都是 140 公分、2 號都是 142 公分,以此類推),那我們可以很直覺地認定「這兩班的身高一模一樣」。不過,要是我們不知道上述的特徵呢?假設我們從兩班中各隨機抽 10 個學生,比較這兩組學生的身高,其中甲班抽出的 10 個學生平均身高 150,乙班的則是 140,而這個差距不代表甲班的學生身高比乙班高,只是抽樣時剛好都抽到比較高的學生罷了。p 值就是在計算這個「剛好」的機率。
回到研究。更精準得來說,p 值=0.06 的意思是,如果蛋白質分配的方法對增肌完全沒有影響的話,得到跟我們實驗的結果一樣或更加極端的機率為 0.06(6%)。通常只要 p 值高於 0.05,我們就會認為兩組之間沒有實質上的差異,所以這個統計的結果即是認為「平均分配蛋白質到每一餐不會幫助增肌」。
我們可以透過觀測到的幾棵樹來描繪一個森林的樣貌,但還是會有錯誤的地方。統計也是類似,想透過觀測到的局部來推斷全體,就難免會有出錯的時候,只是可以用數學來有邏輯地進行判斷,以最小化錯誤。
以本研究為例,p 值=0.06 其實相當靠近 0.05,換句話說只要 p 再小一些,我們就會得出完全不同的結論。而在受測者人數較少時,p 值的計算結果原本就會比較大,所以說不定若他們再多招募幾個受測者,就會改得到「蛋白質分配會影響增肌效果」的結論。
更進一步來看,雖然都沒有達統計顯著,但平均分配蛋白質的受測者們在「每一樣肌力與瘦組織的測驗上」都更高。綜合以上兩點,可以合理推斷平均分配蛋白質或許真的更有利於增加肌肉量和肌力,只是程度不大,所以難以從有限的受測者中觀測到明顯的差異。
本文在不提及任何公式的前提下介紹了代表離散程度的「standard error」和判斷差異顯不顯著的「p 值」,並解釋它們在本文的意義及限制。現在除了看標題和結論外,也能去看看結果的 p 值和實驗前後的 SE,讓你對研究的認識更加深入。即使如此,本文也只是介紹統計學的一些皮毛而已,若大家有興趣的話,未來再寫進階一點的統計學。
很多人都認為同時增肌減脂是新手的權利,並認為交替增肌、減脂的 cycle 才是擁有好身材的方法。但為什麼會有研究發現健齡五年的健身老手也能同時增肌減脂呢?(圖文版:@vin_training)
同時增肌減脂(也就是 recomposition)是大家的夢想,但一旦脫離新手圈、成長的幅度減緩了,就容易遇到瓶頸。此時,交替增肌與減脂是一個繼續進步的好方法。因此,多數人在成長停滯後,便認為自己無法再同時增肌減脂了。但事實上,許多人的訓練、飲食、與恢復還有很大的進步空間,若能更認真、更仔細地執行健身,就很有機會再度獲得新手般的進步,讓自己成功地同時增肌減脂。這不是空泛的勵志話,而是確實被記錄於研究中的真實故事。
本文即是要解釋,為何同時增肌減脂比多數人認為的可行,及如果你符合條件的話,要怎麼同時增肌減脂。
同時增肌減脂理論上是可行的,只要消耗脂肪、產生能量,然後把這能量拿去建造肌肉即可(《熱量是怎麼變成肌肉的?》有更詳細的解說)。
不過,如果你的身體不太想再減少脂肪,也不容易再快速增肌的話,同時增肌減脂就會變難。因此,基本上只有以下幾類人是可以有效地同時增肌減脂的:
總結來說,若你增加肌肉或減少脂肪的傾向很高,那你就可以同時增肌減脂。
令人意外的是,竟然在一些研究中,有規律重訓多年的人還成功同時增肌減脂了。
一篇探討蛋白質的研究,意外地發現平均訓練年資五年的實驗組在八週的訓練後,竟增加了 1.5 公斤的瘦體重並減少了 1.6 公斤的脂肪重。他們不是新手、也不肥胖(男女平均體脂 18%)、規律訓練、也沒用藥。那照理來說,他們應該不太可能在短短八週內就明顯增肌減脂才對。
確實,健身老手很難顯著地同時增肌減脂(可參考這篇回顧性論文)。但不可否認的是,上述的蛋白質實驗和其他相關實驗中,總是有一些健身老手可以同時增肌減脂。他們的結果可能會在平均中被抵銷淡化掉,但這些「個案」是真實存在的。那這些「個案」為什麼能同時增肌減脂呢?
如果我們再深入地去探討上述成功增肌減脂的那篇研究,會發現即使實驗組平均訓練年資有五年,但臥推 1 RM(rep max,次數最大重量)只有 87.8 公斤,而深蹲 1 RM 只有 112 公斤。這以平均體重 75 公斤的實驗組來說,絕對不是能稱得上「advanced(進階)」的表現。這代表了,雖然訓練年資長達五年之久,但他們並不能稱為「健身老手」,且他們的進步空間還非常大,所以在透過恰當的飲食與訓練後,他們才能在兩個月內同時增肌減脂,還提升肌力。
在健身房放眼望去,其實大部分的人都跟實驗組的人一樣。就算已經規律重訓數年,但嚴格來說,甚至可能還未脫離新手圈。為什麼呢?
雖然很多人沒有發現或不敢面對,但你「其實沒那麼認真」,不管是在訓練上還是飲食上都一樣。可以觀察看看,健身房中有多少人在重訓時,一組中最後一下和第一下的速度根本差不多快,這代表他們離力竭非常遠。簡而言之,他們的訓練缺乏足夠的強度去刺激成長,所以才會一直停滯在原地。飲食和休息也是,有確保自己真的有攝取足夠的蛋白質嗎?有確保每晚能睡到 7–8 小時嗎?若「吃、睡、練」都還沒認真施行,那不管訓練年資有多長,都不能稱之為健身老手。
換句話說,對這些人來說,只要把吃睡練做好,就很可能可以同時增肌減脂。
除此之外,原本較少訓練的部位,也較容易在減脂的同時肌肥大,因為疏於訓練的肌群就類似於新手,增肌的傾向很高。譬如,對一個認真健身多年的人來說,或許很難在減脂時還讓胸肌成長,但如果他平常比較少鍛鍊小腿,那只要此時衝高小腿的訓練量,小腿就很有機會增肌。
再舉我自己的經驗為例:我原本的訓練偏向健力,所以背肌肌肥大訓練做得比較少。某次減脂時,我把背部訓練量增為原本的 1.5 倍,就成功在減脂時仍獲得背部肌肥大。
會讀這篇文章的人,可能有 20% 是確確實實的健身老手了。對你們來說,把增肌和減脂交替進行會是比較有效的方法。對其他八成的讀者來說,下面六點是可以幫助你有效增肌減脂的重點(反過來講,如果你目前尚未做好這六點,那你同時增肌減脂的可能性就很高)。
若你發現你跟本文引用的研究中的受試者很像,雖然訓練多年,但不管在身材或是肌力表現上都不出眾,那遵循本文的建議就有機會讓你突破瓶頸,再次增肌減脂。但這條路絕不容易,它要求的是更高的自律,及更嚴苛訓練和生活方式。想要享有同時增肌減脂的特權,就要拿出相對應的決心。
為何熱量盈餘能幫助增肌?想增加一定要一直塞食物嗎?同時增肌減脂到底可不可行?(圖文版:@vin_training)
根據「質量守恆定律」,一個人體重增加,就代表一定有吃東西。這很合理。但等等,我們從來不會用食物的重量來計算該吃多少,我們都是用熱量啊!熱量是「能量」,身體組織是「質量」,那我們增肌時就是把能量轉換成質量、減脂時就是把質量轉換成能量囉?
當然不是。雖然核能發電廠確實可以把質量直接轉化成能量,讓我們有電可以用,但在生物體中,能量與質量是不會直接轉換的(除非你是鋼鐵人在胸口有安裝核反應爐)。所以,體重的增減還是來自於物質的吸收與排放。那熱量到底在這之中扮演什麼角色呢?
這一切都要從 ATP 說起。
與其說 ATP 是能量貨幣,不如說是能量「電池」。充飽電時這個電池就是 ATP,並在釋放能量後變成沒電的 ADP。
「ATP 是人體的能量貨幣」是課本最常用來描述 ATP 的一句話,代表身體需要能量時,就會使用 ATP。或許就是因為如此,讓許多人自動把 ATP 與「能量」劃上等號。但 ATP 其實是一種「高能分子」,而不是能量。ATP(adenosine triphosphate)的中文為三磷酸腺苷,顧名思義就是「有三個磷酸根的腺苷」。
你可能還是會想說:磷酸根和腺苷又是什麼東西?別擔心,你不需要搞懂詳細的化學,只要知道 ATP 的親戚們是誰就好。跟 ATP 擁有類似結構的分子,稱為「核苷酸」,也就是人體遺傳物質的構成原料。RNA 是由核糖核苷酸組成,而 DNA 則是由去氧核糖核苷酸組成。可以參考下表:
當身體需要能量時,會把 ATP 和水找來,讓它們化學反應變成 ADP 和 P。這個反應會產生能量,而身體就能將這個能量用在需要的活動上,如收縮肌肉或合成身體組織。
因此,與其說 ATP 是能量貨幣,不如說是能量「電池」。充飽電時這個電池就是 ATP,並在釋放能量後變成沒電的 ADP。講到這邊,大家應該已經可以理解,物質跟能量是不能混為一談的。
*註:我還是認為課本把 ATP 比喻為能量貨幣是合理的,因為當我們在分析生理反應時,有 ATP 確實就等同於有能量。本文是為了讓大家能分辨「能量」和「物質」的差異,才用電池做比喻。
粒線體則會分解營養素的代謝物,這個過程會放出能量,而這個能量就能拿來把 ADP 變成 ATP,供日後使用。
既然 ATP 是從 ADP 「充電」而來的,那這個電(能量)是從哪裡來的呢?
ATP 的能量來源是由分解物質而來的,且大多數的 ATP 都是由粒線體製造的,所以粒線體又被稱為人體的「發電廠」。我們先來看看真正的發電廠是怎麼發電的:
火力發電廠會把煤炭燃燒成較小的物質,如二氧化碳和水。這個過程會放出大量的熱能,而這個熱能就能拿來驅動發電機,然後即可把電儲存在電池中,供日後使用。
粒線體則會分解營養素的代謝物。這個過程會放出能量,而這個能量就能拿來把 ADP 變成 ATP,相當於把能量暫存在 ATP 中,供日後使用。(註:這個分解作用是一種「氧化反應」,跟燃燒的本質是類似的,既會排放二氧化碳和水、也會釋放能量,所以可以把它想成「慢速燃燒」)
你可能會想,既然最後 ATP 還是要轉化為 ADP 才能給肌肉所需的能量,那為何不一開始就直接讓粒線體釋放能量給肌肉,還要先做成 ATP 再給肌肉?其實這就跟你為何要買電池而不是直接連發電廠的電一樣,因為肌肉收縮的部位跟粒線體有段距離,所以讓電池移動到各地比把發電廠搬來搬去更有效率。
發電廠的煤炭,是煤炭加工廠把開採出的煤炭加工好,再送去給發電廠。而人體則是有消化系統「加工」吃進的食物、吸收營養素後,再拿去生產 ATP。
當你吃進一個漢堡時,消化系統會用各種物理及化學作用把漢堡的蛋白質分解成氨基酸、澱粉/糖份分解成簡單醣類、脂肪分解成三酸甘油脂,然後再由小腸吸收至循環系統中。此時,這些營養素才能拿來儲存起來或生產 ATP。
要把 ADP 變回 ATP,就需要靠分解營養素所提供的能量,所以就得從食物或身體組織中取得營養素。
當夏季用電量激增時,發電量會趕不上需求。此時,發電廠需要採購更多的煤炭才能發更多的電、卻又不會讓庫存量減少。但如果採購的煤炭還是不夠的話,就還是得用庫存的來發電了。
人體也是類似的情況。身體以醣類和脂肪酸(及少量的氨基酸)作為生產 ATP 的燃料。當循環系統中的燃料不夠用時,我們需要吃東西以提供更多營養素;如果吃的食物又不夠時,就會分解肌肉及肝臟中的肝醣和脂肪細胞中的脂肪來提供醣類和脂肪酸。這些來自食物或來自身體組織的分子,就能被粒線體分解,產生 ATP,供身體使用。
舉例來說,運動會消耗大量能量,所以肌肉中的很多 ATP 會被使用並轉化成沒電的 ADP。此時,身體需要將這些 ADP 「充電」變回 ATP,才能繼續給肌肉取用。而要把 ADP 變回 ATP,就需要靠分解營養素所提供的能量,所以就得從食物或身體組織中取得營養素。若從身體的庫存中取用大量營養素,體重就會降低,這就是減重的原理,也是為何熱量消耗需要大於熱量攝取,才有可能取用大量的庫存脂肪。
如果活動量減少或食物攝取增加,就會使體內循環的營養素增多,此時製造出來的 ATP 會高於身體所需。既然沒有什麼需要使用 ATP 的事,那就把 ATP 的能量儲存起來吧!
血液循環中的簡單醣類、三酸甘油脂、和氨基酸可以被合成成肝醣、脂肪、和蛋白質,作為能量庫存,未來食物缺乏時可以拿來產能(如上一節所述)。
肌肉其實一直都是在合成與分解,並維持一個動態的平衡,就像是一個活水湖一樣要有水流進來、也要有水流出去,才能保持水質乾淨,不然就會變一灘死水。所以增肌其實是蛋白質合成速率大於分解速率,並不是只合成、不分解。
熱量盈餘能幫助增肌,是因為當循環中的營養素夠多時,身體就有許多的 ATP 可以運用。等這些維持生理機能、提供運動能量的需求都被滿足後,剩下的 ATP 就能幫助循環中的氨基酸合成成蛋白質,讓肌肉增大。(這也是為何除了熱量要夠外,蛋白質也要充足,不然就算有了 ATP 也沒有材料可以建造肌肉)
但熱量在平衡時、或甚至些微赤字時,也有機會能夠增肌同時減脂。請看回圖六,如果來自小腸的營養素不夠的話,是可以動用庫存的脂肪來生產 ATP,然後再拿這些 ATP 去合成肌肉的。不過,這對肥胖者(脂肪庫存多)和新手(容易合成肌肉)才比較有效,對於已經偏瘦或重訓經驗豐富的人,還是要在熱量盈餘較能有效增肌。
希望透過這篇文章,能讓大家對於「食物、能量(熱量)、和身體組織」的關係更加了解。如果下次有人問你:「熱量是怎麼變成肌肉的?」相信你已經可以自信地回答:「食物中的能量在經消化與分解後,會暫時儲存在 ATP 中,此時只要有足夠的 ATP 及氨基酸,ATP 就能提供氨基酸合成成蛋白質所需的能量,最終讓肌肉增大。」
如果他們聽不懂,那就傳這篇文章給他們就好。
更多進階健身知識,請閱讀我的 Medium 帳號 Vincent C.
並追蹤我的 Instagram @vin_training。
关于车里用的燃气炉灶方案。因为只是简单的 van,而不是正式的房车,不存在内嵌的燃气系统,只是每天把各种气罐炉头搬来搬去。简要地说,每天使用最多的方案是:
从大号液化石油气罐(POL),先转成美式一磅罐卡口(UNEF 1″),再转接到户外圆罐炉头(Lindal B188)上。
这样的组合,可以随时把其中的一些环节,替换成其它款式的气罐和燃气用品。
户外常见的气罐接口,大概有这五种:
① POL,也就是最常见的大号「煤气罐」,准确地说,叫「液化石油气罐」。我这边日常可以买到的,有 3.7kg 和 8.5kg 两种容积。大的更划算,但我的床板下面只能放进小号的,换一瓶气大约 $20,Bunnings 和很多加油站都有换。
还有一种 LCC 27 接口,是 POL 的升级版。近年来政府渐渐把 POL 气罐,升级成更安全的 LCC 27 接口。这个是向下兼容的:原先用在 POL 上的管线,仍然可以拧进 LCC 27 的气罐;反之则不行,LCC 27 专用的管线,不能用在 POL 气罐上。所以,使用 POL 的管线,就不必在乎每次换到的气罐,是旧接口还是新接口。
② 3/8″ BSP-LH,另一种大号石油气罐的接口,通常只有专门的户外型房车才会使用。加油站很少见,更换气瓶也远不如 POL 方便。可以很方便地改成 POL,户外店有转接头卖($15)。
③ UNEF 1″ / BOM,北美常见的一磅重的绿气罐,北美的加油站和便利店到处都是,但澳洲和中国很少,只有专门户外店才有。
④ Lindal B188,又名 7/16 UNEF,户外背包露营时,最常见的扁圆气罐。虽然北美有很多炉头,都是 ③ 的 UNEF 接口,但毕竟 UNEF 接口过于笨重,自己背而不是车载露营的话,国际通用的炉头,更多的还是 ④ 的接口。
⑤ 常见的火锅店长气罐。虽然工艺远不如 ③ ④,但是更便宜也更好买,所以很多用 Lindal 圆罐炉头 ④ 的人,都会常备一个 ⑤→④ 的转换头($5)。(长罐到美式一磅罐 ⑤→③ 的转接头我从来没见过,大概因为美式罐太笨重了)
还有一些不常用的接口,譬如和 ④ 很像但是不带螺纹的气罐、以及一些笨重烧烤台用的 1/4” BSP……与本文无关,就不面面俱到地提及了。
一张图显示我日常的炉灶系统:
于是,日常使用最多的组合方案,包括:
日常煮食时,炉头和锅放在旁边的桌板,或者直接放在地上也可以。并不需要专门把气罐搬出来用。
其它车内需要用到燃气的装置,还有:
以及,必须的,一氧化碳监测仪,$25
ps,关于灌装。所有的一磅罐、户外圆罐、火锅长罐……厂家都是禁止用户自行灌注燃料反复使用的。但所有这些罐子,都存在着自行灌装的黑科技,以及相应的很便宜的转接头卖。其中美式一磅罐因为自带减压阀,比其它罐子更安全一些。个人感觉重复灌几次,还是没问题的。网上也不乏号称一个罐子反复用了一辈子的。但我还是不推荐读者贸然使用,请自行斟酌。如果只是偶尔用一下小罐子,多买几个一次性火锅气罐也就是了。
卖转接头的网店图。——但是连卖家的演示图,也是错误的。灌装时应该把大罐子倒置,让沉在下面的液态的石油气流进小罐子,而不仅仅是挥发的气态。
大概我们每个人,哪怕三观再正的人,应该都经历过:一些自己真的有在喜欢的东西,可能是「不正确」的,由此产生的内心冲突和纠结。
这个内心冲突的过程,可能会很难受,而且很可能没有确定的答案。——很多时候,是选择继续喜欢下去的,因为从「喜欢」变得「让自己不喜欢」,其实是个很玄学,很难做到的事情。于是只能喜欢且痛苦着,或者让自己把那些痛苦的思考,渐渐无视遗忘。
也可能,通过反思,真的能让自己对以前喜欢的东西祛魅,从此对它没啥感觉。——(其实很多时候,是被「反思成功」的成就感所掩盖……)。但失去了一个兴趣,也是很难受的事,尤其是周围还有很多人,仍然把这个当作兴趣,甚至是日常交流沟通的话题的时候。
也有很多时候,是脱离了二分法,就这么在二者之间悬浮着。因为那个「不正确」的事情,是否 100% 不正确,有没有好的一面,通常也是可以辩论的……以及,这个发现「不正确」的过程,可能是自己渐渐觉悟到,也可能是别人硬戳过来,说你喜欢这个不对。于是又涉及维护面子;或者先声讨对方的态度……
这些都是可以理解,可以接受的反应。——甚至连艰难地无视,也可以说是合理的。因为,如果避开那些「不正确」背后的,错综复杂到无法撼动的因素和体系,而单纯要求你拿出一个面面俱到的态度,这本身也是一种不公。
但至少不要——
因为「我真的喜欢」,所以理直气壮地认为这东西没有问题。
「我喜欢」,从来都不是「这个东西是正确的」的理由。一方面,你之所以喜欢它,可能已经是某种糟粕文化的后果。另一方面,同样的事物或行为,不同环境下人们对它的感受是不同的。就像跳脱衣舞或者买芭比娃娃,可能在你的环境下,它真的意味着个性、张扬、多样性;而对其它很多人而言,也确实是剥削、是凝视、是痛苦的印象。那么,这东西的合理性,是否因此对你就没那么理直气壮?
如今的很多争吵,大概都源于某种「我的个性自由不应被阻挡」的态度。但很多事情,是需要在微妙地平衡中,甚至是在让自我痛苦的过程中,才能更好形成的。
就像恋爱脑爱上了渣男。尽管会为此而痛苦、犹豫,最终可能选择爱或不爱,但毕竟是清楚他是个渣男的;而不是拼命要去说服他并不渣呀。