Reading view

There are new articles available, click to refresh the page.

肌肉記憶 詳細解析(中):改變基因?

上集說到,肌核假說只是肌肉記憶的一部份,但其他機制竟然可以改變基因?

前言

我們可以為了方便解釋而把肌肉記憶簡單區分為「肌肉」和「神經」兩個系統。因肌肉系統的記憶機制相對複雜,所以除了上集介紹的「肌核假說」外,本文還要來講解肌肉系統的另一個記憶機制:表徵遺傳學。

簡介

雖然我們現在知道「肌核假說」恐怕不是肌肉記憶的主要解釋,但別忘了,肌核本身對肌肉的成長還是至關重要,因為細胞核掌握了一個細胞的遺傳資訊,也會直接影響蛋白質的製造。

一個人幾乎所有的細胞(但不是全部)都擁有同一套基因,也就是父母留下的遺傳資訊。這些遺傳資訊以 DNA 的形式被保存在細胞核內,而細胞則會依照此基因藍圖來產生結構與功能。但既然資訊都是同一套,那為什麼神經、肌肉、脂肪等各式各樣的細胞,都會有不同的樣貌與功能呢?

這是因為,不同細胞對這一套基因組會有不同的表現。可以把它想成所有國家的廚師都擁有同一本超級世界食譜,但不同國家的廚師常做的料理會不一樣。例如台灣的廚師最常使用東方菜的食譜、有時會烹飪歐美料理、但幾乎是完全不會翻閱拉丁美洲傳統民族料理的食譜。因此,雖然每個廚師都擁有同一本超級食譜,但不同廚師製作出的料理類型則不盡相同。

雖然人體不會主動改變 DNA 序列(突變才會),但我們可以改變細胞讀取 DNA 的方法。這種「在不改變 DNA 序列的情況下,改變基因表現」的學科,即為「表徵遺傳學 epigenetics」,也是肌肉記憶的熱門候選機制。今天就要來帶大家了解,有什麼跟肌肉記憶有關的表徵遺傳學機制。

重點

  1. 訓練後,能促進增肌的基因會更容易被表現、而能抑制增肌的基因會被關靜音,也就是讓整體遺傳資訊更能幫助肌肥大。
  2. 就算停練而導致肌肉縮水,這些基因表現的改變仍會被留下來,使再度訓練時的增肌效果更佳。
  3. 基因的「甲基化」可以控制這段 DNA 被讀取的次數,若促進增肌的基因甲基化減少,則可以被讀取更多次,幫助增肌。
  4. miRNA(微 RNA)會防止對應的蛋白質被合成出來,若身體減少特定的 miRNA 生產,則可以增加特定的蛋白質合成,幫助增肌。

表徵遺傳學與健身的關係

不管是肌肉結構、訊息分子、還是生化反應的催化劑,許多都是由蛋白質構成的,而 DNA 就是蛋白質的建構藍圖。當我們讀取 DNA 的一段基因,經過轉錄與轉譯後,即能製造出特定蛋白質。也就是說,若我們能控制 DNA 的讀取,即能改變肌肉合成的反應。而能做到這件事的,就屬「表徵遺傳」的改變了。

當我們訓練後,促進增肌的基因會被頻繁表現出來、而抑制增肌的基因會被關靜音,使細胞能製造更多與增肌有關的蛋白質。此外,就算停練一段時間,這些基因表現的改變仍會被留存,代表再度回歸訓練時,我們的細胞能快速進入增肌準備,讓肌肥大更有效率。

以下,要來介紹細胞會做出哪些改變來操控表徵遺傳,並解釋目前學界有的研究證據。

先備知識:怎麼從 DNA 變成蛋白質?(已了解的可跳過)

想像一下:世界上所有的料理都被集結成一大本超級食譜,放在一個房間內。若想做一道菜,我們必須去翻閱超級食譜,但沒必要把成千上萬的其他美食作法也帶走,所以我們只要抄錄所需料理的部分。把抄錄本帶出房間後,就可以在廚房把這道菜烹飪出來。

回到 DNA 這邊:身上所有的基因都存在 DNA 之中,放在細胞核內。若想製造一種蛋白質,我們必須去讀取 DNA,但沒必要把所有基因的資訊也帶走,所以我們只需抄錄(a.k.a.「轉錄」)所需片段,把抄錄本(a.k.a.「RNA」)帶出細胞核後,就可以在細胞質裡面合成出蛋白質(a.k.a.「轉譯」)。

(圖一)從 DNA 到蛋白質

別忘了,這本超級食譜雖然每個細胞都有,但不同細胞會讀取的段落不同,所以才能產生不同的蛋白質來實現各式各樣的結構與功能。

基因的隱形斗篷:甲基化

當肌肉細胞受到重訓刺激時,肌核(肌肉細胞核)中的 DNA 會被改變讀取方法,使促進增肌的基因被更頻繁轉錄、而抑制增肌的基因則減少轉錄頻率。那細胞是如何改變 DNA 的讀取方法呢?答案是「甲基化」。

可以把「甲基」想成隱形斗篷,當我們把甲基安裝在一段基因上時,這段基因就會被靜音、忽略。若把甲基拿走,就會讓這段基因又開始顯現出來、並能被轉錄成 RNA。

不過,甲基化並不是非開即關,而是能控制不同的顯現程度,所以一段基因可能只是被減少轉錄頻率,而非被完全靜音。當一段基因被安裝上更多甲基而變得更隱形時,我們稱之為「高度甲基化」;相反地,若基因被移除甲基而增加表現頻率,則被稱為「低度甲基化」。

研究(如 12)發現:重訓之後,許多基因會低度甲基化,例如與 mTOR 相關、能提升肌肉蛋白合成的基因;一小部分的基因則會高度甲基化,如與細胞凋亡相關的基因。

這一系列的表徵遺傳改變使肌肉細胞的增肌效率大增。更重要的是,就算停練之後,這些改變仍能被保留下來(能保留多久仍有待確認),使再度訓練時擁有比初始階段更有效率的肌肥大。這就是「甲基化的肌肉記憶」。

半路殺出個程咬金:miRNA

DNA 會被轉錄成 RNA,然後 RNA 會被轉譯成蛋白質……其實沒那麼簡單。不是所有 DNA 片段最後都會成為蛋白質,只有轉錄成「信使 RNA(mRNA)」的才會。在其他 DNA 片段中,有一種會被轉錄成「微 RNA(miRNA)」,也就是表徵遺傳的另一個控制因素。

miRNA 就像半路殺出的程咬金,會在 mRNA 轉譯成蛋白質前阻止它,讓這個基因無法製造出蛋白質。也就是說,就算基因沒有被「甲基隱形斗篷」蓋布袋,它最後還是無法產出蛋白質。所以我們會希望減少跟增肌相關的 miRNA。

2020 的一篇研究發現,老鼠經過阻力訓練後,miRNA-1 的量會顯著減少。miRNA-1 是常見於骨骼肌中的一種 miRNA,它會抑制肌肉細胞的生長,因此若數量減少則能幫助增肌。

更重要的是,當老鼠經歷長達 6 個月的停練後,雖然肌肉大小和肌核數量都已打回原形,但 miRNA-1 的量仍然繼續低迷,代表肌肉的基因表現上是適合增肌的、也代表肌肉細胞能透過 miRNA-1 來保有先前訓練的「記憶」。

但還是無法完全歸因於它

雖然表徵遺傳學這個解釋相當合理且誘人,讓人不禁推論肌肉記憶就是它的功勞,但其實我們離那步還有些距離。

首先,我們並不知道在人身上,到底多久的重訓經歷可以使表徵遺傳產生變化、也不知道這個變化到底能維持多久。再者,我們並不知道不同訓練年資與程度,會如何影響表徵遺傳的差異。最後,我們也不知道表徵遺傳的差異究竟會多劇烈地影響增肌。

即使如此,在學界中表徵遺傳學仍然是肌肉記憶的一大巨星,也相信未來更多的相關研究可以帶我們更加認識這個機制。

總結

肌肉細胞可透過表徵遺傳的改變,去影響基因的表現方式,進而影響增肌的效果,而其中較明顯的機制是透過「甲基化」和「miRNA」去做改變的。停練後,促進增肌的表徵遺傳並不會馬上消失,而是能繼續維持,幫助我們回歸訓練時能快速回到原本的程度,這就是肌肉記憶的表徵遺傳學假說。

至此,我們介紹了兩種肌肉記憶的肌肉系統機制:曾經風光的「肌核假說」和具有無限潛力但仍充滿未知數的「表徵遺傳學假說」。但重訓表現的快速恢復,除了肌肉本身的成長外,也有神經系統的貢獻。本系列的最後一篇文章,會再帶大家了解肌肉記憶的神經系統機制。

❌