Reading view

There are new articles available, click to refresh the page.

伪需求

最近小半年来因为工作的问题作为销售外勤的我也经常需要用到电脑处理些许文档了,有几次遇到过临时紧急的需要弄一个文档的时候只能在外面找个网吧临时对付一下。有过几次这样的经历之后就有了买台笔记本放包里用的想法,加上去年已经解决了温饱问题,兜里有一点点可以支配的私房钱了,于是就正式的开始选购起了笔记本,原则就是轻便和能打开一些复杂的报表就可以了。

考虑到数码产品“买新不买旧,除非钱不够”的原则,最开始是打算买个 ThinkPad X 系列,毕竟这个牌子是我用上电脑就接触到的第一个品牌。但是看了下新款的价格,以及老款那种傻大黑粗的造型,最终是在同城论坛买了个 2020 款的丐版 M1 的MacBook Air。买来前两天还是有些不习惯的,因为很多在 Windows 上用得得心应手的快捷键到了 macOS 上就变了,但是 macOS 下的 Office 软件对应的快捷键和 Windows 下又是一样的,为了减轻本来容量就小的脑子的负担,只能把快捷键映射成和 Windows 下一样的操作。

恰好家里的台式机还是 10 年前的联想扬天一体机,i3 4130的性能已经不堪用了,打开个 5M 左右的 Excel 报表都要转半天。笔记本都升级了,台式机也升级一下吧,又花了 400 块在同城买了一台 8100T+16G+256G 的主机,又在京东花了 1399 买了个杂牌的 23.8 寸 4K 显示器。这个后面觉得买亏了,没有 VESA 接口上不了支架,同等价位下都可以买到底端品牌的 27“ 4K 了。不过作为穷人要有穷人的觉悟,用一句“又不是不能用“就能简单的安慰自己。现在作为天选打工人再也没有什么能够阻挡我随时随地的工作了。

正常用了一个多星期,在网上看了些视频说是乞丐版的 MacBook Air 剪辑视频会很卡,至少需要 16G 以上的内存才能流畅使用。为什么会有这样的需求呢,因为打算把娃每一年的视频和照片剪辑到一起,方便分享给家里人看。但是考虑到“买都买了”、“又不是不能用”的时候,只能从其它方面入手解决这个问题了。

新买的 i3 8100T 不是正好 16G 的内存嘛,可以用来 Hackintosh ,再认真的了解了一下之后现在的 Hackintosh 安装已经不像几年前用变色龙、Clover 那么复杂了。使用 Opencore 简单的配置一下就能启动起来,剩下的细节问题就看在不在乎了,如果不在乎所谓的“完美”配置,只要能启动就起来就是能正常使用的。于是又在小黄鱼上买了 200 块买了张“拆机”RX570 8G 显卡,其实都明白这是个 RX470 矿渣刷出来的,但是本着“又不是不能用”的心态,买家卖家都看破不说破了。其实说不定 i3 8100T 自带的核显 UHD630 都是够用的。这么配置下来性能强于 2018款的 Mac mini,约等于同配置的 2019 款的 iMac,而且我这个算上显示器还不到 2000 块,真是划算呢。

因为这台算上显卡 600 块买的这台主机没有 M.2 接口,上不了 NVME 的固态硬盘,又打算把主板处理器主板硬盘升级一下,打算升级到 i5 8500 和带 M.2 接口的主办以及 500G 的 NVME 硬盘,预计花费 700 左右。虽然 10 代处理器是最后能完美使用核显装黑苹果的处理器,但还是那个买新不买旧除非钱不够的原则只能考虑 8 代。

又在网上看到了 18-19 款的 MacBook Pro 下半身,想着有 4K 显示器了可以高一个来玩玩,预计又要花费 1500 左右。

这么一折腾的话目前家里的台式主机花了 600 ,显示器 1400,笔记本 3600,准备更新的配置的台式机预计花费 700,苹果无头骑士 1500,这样算下来我就得到了一台性能将就的 PC 机,1.5 台 Mac 电脑,总计将会花费 8000。

眼看着购物车里的东西越来越多,回过头来我只是想有个能移动处理工作的笔记本和同时能把熊孩子平时的照片视频素材剪到一起的工具而已。更何况都还没有用现有的设备尝试能不能完成自己的需求,因为下载好的“剪映”软件图标下到现在都还有个小蓝点(还没打开过),淘宝买的共享 ID 下载的 FCPX 也同样没有打开过(还没用过就不算用盗版吧)。

很突然的,我觉得应该打住了,都本命年的人了不应该由着自己的想法来,看是的看看自己的真实需求,不用用一些借口来创造伪需求。就像之前玩无线电、学钓鱼、骑摩托车一样,都是刚刚开始用就已经无限预算的想买买买了,更何况我到现在为止做什么都是三分钟热度。

及时的通过其它方式转移注意力,这两天又迷上了通过脚本来签到各种 APP 的玩法,换个其它东西吸引注意力之后就不会花太多的心思来想折腾电脑的问题了,毕竟只是工具。

您也许会感兴趣:

  • 暂无相关文章:

Choosing an Apple silicon Mac

This coming autumn it’ll be five years since Apple started shipping its first Apple silicon Macs, and it’s already four years since the first M1 iMac. As prices of used Intel Macs are tumbling, more Apple silicon models are coming onto the used market. With a total of 15 basic M-series chips now available, this article tries to help you decide which new or used Apple silicon model to buy.

CPU cores

With such a wide choice, this is perhaps the most complex feature to understand, and it’s likely to make the biggest difference to what your Mac will do. M-series chips have anything from 2-8 Efficiency (E) cores, and 4-24 Performance (P) cores across four different families.

Although folk are usually more concerned with the number of P cores, E cores are responsible for doing much of the routine work, and shouldn’t be ignored. They run most of the background tasks in macOS, from Time Machine backups to indexing all your images and documents for Spotlight. P cores are largely responsible for running the code in your apps, so determine how fast it feels in use.

Most M-series chips have at least 4 E cores, but two, the M1 Pro and M1 Max, have only 2. They compensate for that by running those E cores at higher frequencies when working on heavy background tasks, but subsequent designs have set the comfortable minimum at 4, and the latest base M4 comes with 6. Of the two core types, E cores are the more versatile, as they can run all types of task, background or user, and when running at their maximum frequency can deliver a high proportion of the processing power of a P core. As an E core’s energy use is much lower than that of a P core, they’re a better option when running a laptop Mac on its battery.

The four E cores in this M4 Pro are kept fully occupied in the minutes after starting up, leaving the P cores free for running apps smoothly.

P and E core performance has increased with each new family. This is illustrated in different types of computation, when running one thread on a single core.

M4M3multiTests

The Y axis here gives loop throughput per second for my four basic in-core performance tests, a tight assembly code integer math loop, another tight assembly code loop of floating point math, NEON vector processor assembly code, and a tight loop calling an Accelerate routine run in the NEON unit. Pale blue bars are results for the M1, purple for the M3, and red for the M4, the higher the bar the faster.

Maximum core frequencies have increased from 3.2 GHz in the M1’s P cores to 4.5 GHz in the M4. One crude comparative measurement of overall computing capacity is to total the maximum frequencies for each of the CPU cores in each chip. Those are shown as Σfn in the table below, and the chart that follows it.

These are also complicated by sub-variants and binned versions, where one or two cores have been disabled by Apple, to produce a cheaper chip.

If you’re looking for CPU performance, the M3 Max, and M4 Pro and Max stand out and approach the performance of Ultra chips. But those assume that the software running is able to make full use of all the cores available. There’s no point in paying for the 32 cores in an M3 Ultra if the app you run most can’t use many of them.

Another detail that’s easily overlooked is the instruction set (ISA) supported, notably that of the M4, which includes new features for accelerated matrix and other computation. In this respect, the M2 family has been underrated, as I’ve explained here.

GPU

For most, the choice of CPU cores determines the GPU provided, and for general use they’re well matched. Exceptions to this are when high GPU performance is essential, and to support external displays. In either case you’ll need to check carefully with Apple’s specifications or Mactracker to ensure support. That’s particularly important when driving multiple high-resolution displays.

Memory

Memory options are determined by the chip, with some starting at only 8 GB, which is insufficient even for the lightest use. There was a myth that the use of Unified memory would result in substantial economy in memory use, but in practice that doesn’t work out, and demand for memory has increased with the introduction of new features such as AI.

The danger with this is that using substantial amounts of swap storage is deceptively fast because of the high speed of the internal SSD. As models with 8 GB memory often have small SSDs as well, this is likely to lead to rapid ‘wear’ of the SSD, and some early adopters saw worryingly rapid changes in wear indicators. Fortunately, Apple has recognised this problem, and all M4 models now come with a minimum of 16 GB.

If you’re interested in buying an older model with only 8 GB, at least check its SSD size and wear indicators before parting with your money. Further information about memory requirements is here.

SSD

While it’s possible to enjoy using an Apple silicon Mac with only 256 GB internal SSD, unless you’re frugal in its use you’ll find yourself buying a more substantial external SSD to supplement that. You can start up an Apple silicon Mac from macOS on an external SSD (or even a hard drive, if you must), but that’s more fussy than with an Intel Mac. If you want to consider relying on external storage, this article explains how best to do that.

For most users, a minimum internal SSD requires 512 GB for comfort and a long life.

Buy to upgrade

Until recently, all Apple silicon Macs have been stuck with the CPU cores, GPU, memory and internal SSD that they came with. That may be changing with some now offering SSD upgrades for the M4 Mac mini. However, those are likely to invalidate your warranty, and aren’t likely to be available for other popular models, apart from the Mac Pro.

Recommendations

  • Prefer a later Pro or Max chip over an M1 Pro or Max, to get at least 4 E cores.
  • E cores are more versatile than P cores, and an advantage when a laptop is powered by its battery.
  • If you need to use external displays, check the model’s support for their number and resolution.
  • Look for a minimum of 16 GB of memory.
  • When buying a model with 8 GB of memory, check the wear on its SSD.
  • Prefer a minimum of 512 GB SSD to avoid relying on external storage.
  • Don’t rely on upgrading any Apple silicon Mac’s internal hardware.

Enjoy your new Mac!

❌