Reading view

There are new articles available, click to refresh the page.

Securing the modern Mac: an overview

Modern Macs and macOS feature multiple layers of protection, most of which I have recently described. This article tries to assemble them into an overview to see how they all fit together, and protect your Mac from startup to shutdown. There are also many additional options in macOS and third-party products that can augment security, but I’ll here concentrate on making best use of those that come with a modern Mac and macOS. My recommendations are for the ‘standard’ user, as a starting point. If your needs differ, then you may of course choose to be different, but should always do so in the full knowledge of what you are doing and what its penalties are.

Startup

Whether your Mac has a T2 or Apple silicon chip, it’s designed to boot securely, which means that every stage of the boot process, from its Boot ROM to running the kernel and its extensions, is verified as being as Apple intends. To ensure that, your Mac should run at Full Security. For a T2 model, that means disabling its ability to boot from external disks; for an Apple silicon Mac, that means no third-party kernel extensions. If you need to run your Mac at reduced security, that should be an informed decision when there’s no good alternative.

A vital part of the Secure Boot process is the firmware loaded by the Boot ROM. That needs to be kept up to date by updating to the latest minor release of the major version of macOS. That doesn’t prevent your Mac from staying with an older supported version of macOS, as Apple supplies the same firmware updates for all three supported versions of macOS.

The System volume should be signed and sealed, as the SSV created by a macOS installer or updater. System Integrity Protection (SIP) should also be fully enabled, as without it many macOS security features work differently or not at all. Some need to disable specific SIP features, but again that should only be set when you’re fully aware of their effects and consequences, and should be the minimum needed for the purpose.

User Data

Having got the system up and running, the boot process moves to what is in mutable storage on the Mac’s Data volume. In the internal SSD of a modern Mac, that’s always encrypted, thanks to the Secure Enclave. Although that might appear sufficient, you should always turn FileVault on if your Mac starts up from its internal SSD. That ensures the encryption is protected by your password: an intruder then has to know your password before they can unlock the contents of its Data volume. They have limited attempts to guess that password before the Mac locks them out from making any further attempts. As FileVault comes free from any performance penalty, there’s no good reason for not using it.

Good security is even more important for Data volumes on external boot disks, where FileVault is just as important, but needs additional physical measures to ensure the external disk isn’t mislaid or stolen. That’s a more complex issue, for which the simplest solution is to start your Mac up from its internal SSD with the benefit from FileVault there.

Run Apps

With the user logged in successfully, and the Data volume fully accessible, the next stage to consider is running apps and other software. For this there’s another series of security layers.

When an app is launched or other code run, Gatekeeper will first check it, and in many circumstances run a check for malware using XProtect. Those shouldn’t be disabled, or macOS will still make those checks, but will simply ignore the results. XProtect looks for evidence that the code about to be run matches that of known malware. Although on its own this won’t detect unknown malware, it’s an effective screen against what’s most common. You also need to keep your Mac up to date with the latest security data updates, as those can change every week or two as new malware is identified and included.

Currently, no well-known malware has been notarized by Apple, and most isn’t even signed using a trusted developer certificate. Most therefore attempt to trick you into bypassing checks made by macOS. In Sonoma and earlier, the most common is to show you how to use the Finder’s Open command to bypass the requirement for notarization. As that has changed in Sequoia, those who develop malware have had to adapt, and some now try to trick you into dropping a malicious script into Terminal. Expect these to become more sophisticated and persuasive as more upgrade to Sequoia.

There are simple rules you can apply to avoid getting caught by these. The first time you run any new app supplied outside macOS or the App Store, drag the app to your Applications folder and double-click it in the Finder to open it. If it can’t be launched that way, don’t be tempted to use the Finder’s Open bypass, or (in Sequoia) to enable the app in Privacy & Security settings. Instead, ask its developer why it isn’t correctly notarized. Never use an unconventional method to launch an app: that’s a giveaway that it’s malicious and you shouldn’t go anywhere near it.

macOS now checks the hashes (CDHashes) of apps and code it doesn’t already recognise, for notarization and known malware. Those checks are run over a connection to iCloud that doesn’t need the user to be signed in. Don’t intentionally or inadvertently block those connections, for instance using a software firewall, as they’re in your interest.

Private Data

Traditional Unix permissions weren’t intended to protect your privacy. Now so many of us keep important or valuable secrets in our Home folders, privacy protection is essential. While you might trust an app to check through some files, you may not expect or want that app to be looking up details of your bank cards and accounts.

Privacy protection is centred on a system known as TCC (Transparency, Consent and Control), and its labyrinthine Privacy & Security settings. One of the most tedious but important routine tasks is to check through these every so often to ensure that nothing is getting access to what it shouldn’t.

No matter how conscientious we might be, there’s always the request for access that you don’t have time to read properly, or items that end up getting peculiar consents, like a text editor that has access to your Photos library or your Mac’s camera. Take the time to check through each category and disable those you don’t think are in your best interests. If you get through a lot of new apps, you might need to do this every week or two, but it needn’t be as frequent in normal use, and shouldn’t become an obsession.

There’s some dispute over whether it’s better to leave an app turned off in a category that you control, like Full Disk Access, or to remove it. I tend to disable rather than remove, with the intention of removal later, but seldom get round to that.

Downloaded Apps

While macOS continues checking apps in Gatekeeper and XProtect, there are a couple of other important protections you need to know about. Since macOS Catalina, every 24 hours or so macOS runs a paired set of scans by XProtect Remediator, looking for signs of known malware. If it finds any, it then attempts to remove, or remediate, that. The snag is that it does this in complete silence, so you don’t know whether it has run any scans, and you don’t know if it came across anything nasty, or removed it. I like to know about such things, and have written my own software that lets me find out, in SilentKnight, Skint and XProCheck. One day Apple might follow suit.

Some browsers like Safari have a potentially dangerous setting, in which they will automatically open files they consider to be safe, once they have been downloaded. This can include Zip archives that might not be as innocent as you expect. If you leave that behaviour set, you could discover your Downloads folder with all sorts of items in it. I much prefer to turn that off and handle those downloads myself. You’ll find this control in Safari’s General settings, where it’s called Open “safe” files after downloading.

Bad Links

Most of the protection so far relies more on features in your Mac and macOS, and less on your habits and behaviour. But it’s the user who is the kingpin in both security and privacy protection. Nowhere is this more important than dealing with links in web pages, emails, messages, and elsewhere. If you’re happy to click on a link without checking it carefully, you can so easily end up in the company of your attackers, inviting them into your Mac and all your personal data.

Unless it’s a trusted web page or contact, I always inspect each link before even considering whether to open it. For emails, my general rule is never, and I inspect the text source of each message to see what that really links to. It’s harder on the web, where even ads placed by Google can whisk your browser into an ambush. One invaluable aid here is Link Unshortener, from the App Store, which is a ridiculously cheap and simple way to understand just where those cryptic shortened links will take you. If you can’t convince yourself that a link is safe and wholesome, then don’t whatever you do click on it, just pass on in safety.

Summary

That has been a whirlwind tour through getting the best from macOS security, summarised in the following diagram. Fuller details about each of those topics are easy to find using the 🔎 Search tool at the top right of this page. There’s plenty more to read, and for deeper technical information, try Apple’s Platform Security Guide.

overallsecurity1

Work and play safely!

A brief history of FileVault

Encrypting all your data didn’t become a thing until well after the first release of Mac OS X. Even then, the system provided little support, and most of us who wanted to secure private data relied on third-party products like PGP (Pretty Good Privacy).

pgp2003

FileVault 1

Apple released the first version of FileVault, now normally referred to as FileVault 1 or Legacy FileVault, in Mac OS X 10.3 Panther in 2003. Initially, that only encrypted a user’s Home folder into a sparse disk image, then in 10.5 Leopard it started using sparse bundles instead. These caused problems with Time Machine backup when it too arrived in Leopard, and proved so easy to crack that in 2006 Jacob Appelbaum and Ralf-Philipp Weinmann released a tool, VileFault, to decrypt FileVault disk images.

filevault2004

FileVault 1 was controlled in the Security pane of System Preferences, shown here in 2004.

newuser2004

Each new user added in the Accounts pane could have their Home folder stored in an encrypted disk image. Encryption keys were based on the user’s password, with a master password set for all accounts on the same Mac.

FileVault 2

FileVault 2 was introduced in Mac OS X 10.7 Lion in 2011, and at last provided whole-volume encryption based on the user password. Encryption was performed using the XTS-AES mode of AES with a 256-bit key, by the CPU. At that time, more recent Intel processors had instructions to make this easier and quicker, but all data written to an encrypted volume had to be encrypted before it was written to disk, and all data read from it had to be decrypted before it could be used. This imposed significant overhead of around 3%, which was more noticeable on slower storage such as hard disks, and with slower Macs.

Apple didn’t implement this by modifying the HFS+ file system to add support for encryption, but by adding encryption support to CoreStorage, the logical volume manager. In theory this would have enabled it to encrypt other file systems, but I don’t think that was ever done.

Turning FileVault on and off was quite a pain, as the whole volume had to be encrypted or decrypted in the background, a process that could take many hours or even days. Most users tried to avoid doing this too often as a result so, while FileVault 2 was secure and effective, it wasn’t as widely used as it should have been.

These screenshots step through the process of enabling FileVault in 2017.

lockratsec

Control was in the FileVault tab in System Preferences.

filevault01

iCloud Recovery was added as an alternative to the original recovery key.

filevault02

Encryption began following a restart, and then proceeded in the background for however long it took. Shrewd users enabled FileVault when a minimum had been installed to the startup volume, to minimise time taken for encryption.

filevault03

With a minimal install, it was possible to complete initial encryption in less than an hour. With full systems, it could take days if you were unlucky.

Although FileVault has had a few security glitches, it has done its job well. Perhaps its greatest threat came in the early days of macOS Sierra, when Ulf Frisk developed a simple method for retrieving the FileVault password for any Mac with a Thunderbolt port. An attacker could connect a special Thunderbolt device to a sleeping or locked Mac, force a restart, then read the password off within 30 seconds. This exploited a vulnerability in the handling of DMA, and was addressed by enabling VT-d in EFI, in Sierra 10.12.2 and 10.12.4.

Hardware encryption

The next big leap forward came at the end of 2017, with the release of the first Macs with T2 chips, as intermediates on the road to Apple silicon. One of Apple’s goals in T2 and Apple Silicon chips was to make encrypted volumes the default. To achieve that, T2 and M-series chips incorporate secure enclaves and perform encryption and decryption in hardware, rather than using CPU cycles.

The Secure Enclave incorporate the storage controller for the internal SSD, so all data transferred between CPU and SSD passes through an encryption stage in the enclave. When FileVault is disabled, data on protected volumes is still encrypted using a volume encryption key (VEK), in turn protected by a hardware key and a xART key used to protect from replay attacks.

filevaultpasswords1

When FileVault is enabled, the same VEK is used, but it’s protected by a key encryption key (KEK), and the user password is required to unwrap that KEK, so protecting the VEK used to perform encryption/decryption. This means that the user can change their password without the volume having to be re-encrypted, and allows the use of special recovery keys in case the user password is lost or forgotten. Keys are only handled in the secure enclave.

Securely erasing an encrypted volume, also performed when ‘erasing all content and settings’, results in the secure enclave deleting its VEK and the xART key, rendering the residual volume data inaccessible even to the secure enclave itself. This ensures that there’s no need to delete or overwrite any residual data from an encrypted volume: once the volume’s encryption key has been deleted, its previous contents are immediately unrecoverable.

eacas

Coverage of boot volumes by encryption varies according to the version of macOS. Prior to macOS Catalina, where macOS has a single system volume, the whole of that is encrypted; in Catalina, both System and Data volumes are encrypted; in Big Sur and later, the Signed System Volume (SSV) isn’t encrypted, nor are Recovery volumes, but the Data volume is.

External disks

Hardware encryption and FileVault’s ingenious tricks aren’t available for external disks, but APFS was designed to incorporate software encryption from the outset. As with internal SSDs, the key used to encrypt the volume contents isn’t exposed, but accessed via a series of wrappers, enabling the use of recovery keys if the user password is lost or forgotten. This involves a KEK and VEK in a similar manner to FileVault on internal SSDs. As the file system on the volume is also encrypted, after the KEK and VEK have been unwrapped, the next task in accessing an encrypted volume is to decrypt the file system B-tree using the VEK.

Enabling FileVault has been streamlined in recent years, as shown here in System Settings last year, for an external SSD, thus not using hardware encryption.

filevault1

FileVault control has moved to Privacy & Security in System Settings.

filevault2

The choice of iCloud Recovery or a recovery key remains.

filevault3

Because only the Data volume is now encrypted, enabling FileVault before populating the Home folder allows encryption to be almost instantaneous, on an external disk.

Virtual machines

The most recent enhancement to FileVault protection extends support to Sequoia virtual machines running on Sequoia hosts. Apple hasn’t yet explained how that one works, although I suspect the word exclave is likely to appear in the answer.

If your Mac has a T2 or Apple silicon chip and you haven’t enabled FileVault, then you’re missing one of the Mac’s best features.

❌