Reading view

There are new articles available, click to refresh the page.

【CDT关注】南华早报|中国新一代监控工具借力AI:已监控7000万Telegram账户、可自动检测翻墙行为

CDT 档案卡
标题:中国新一代监控工具借力AI,重点监控Telegram和VPN用户
作者:Yuanyue Dang
发表日期:2025.5.17
来源:南华早报
主题归类:监控社会
CDS收藏:老大哥馆
版权说明:该作品版权归原作者所有。中国数字时代仅对原作进行存档,以对抗中国的网络审查。详细版权说明

据香港《南华早报》报道,在最近举行的第十二届中国国际警用装备博览会上,公安部第三研究所展示了一款能监控Telegram的工具,据称该工具目前已收集超过300亿条消息,监控了7000万个Telegram账户,以及39万个公共频道和群组。此外,南京的一家科技公司也展示了一款可自动检测翻墙行为的工具。

以下是这篇报道的中文翻译:

中国新一代监控工具借力AI,重点监控Telegram和VPN用户

作者:Yuanyue Dang

在北京举行的年度警用装备博览会上,参展商表示,中国未来的警务工作将由人工智能监控工具驱动,这些工具不仅可以监控Telegram和VPN用户,还能利用受DeepSeek启发的模型分析案件线索。

这些监控设备本周在第十二届中国国际警用装备博览会上展出,该展会于周六(5月17日)落幕,是国内同类规模最大的警用科技展。展会为来自全国的警用和防务设备供应商提供了与公安部门争取订单的机会。

参展商包括隶属于中国最高警务机构公安部的研究所,以及多家民营企业。

人工智能技术成为展会上各类产品的重要卖点,包括监控工具、刑事侦查设备和无人机干扰装备。其中一项展出的技术是公安部第三研究所推出的“个人极端行为多维情报分析”。

据该研究所介绍,中国在对“个人极端事件”进行预警时面临安全挑战。该所已开发出AI模型,通过分析购物记录、搜索历史和社交媒体帖子,识别高风险人群。

研究所表示,这款工具基于中国初创公司Dify的AI代理服务开发,Dify是一个开源大语言模型(LLM)应用开发平台。

过去一年中,发生了多起“独狼”袭击事件,令中国社会震惊。最严重的一起发生在去年11月,珠海一名男子樊维秋驾驶SUV冲入体育中心外人群,造成至少35人死亡、43人受伤。樊维秋已于今年1月被执行死刑。

自那起事件后,北京方面多次强调维护社会稳定的重要性,要求地方官员识别可能实施此类“极端事件”的人员。

该官方研究所还展示了AI辅助的手机取证工具和逃犯追踪系统。

许多厂商将警用设备的安全性作为主要卖点之一。

有公司宣称,其工具可以监控警用设备的使用情况,特别是上网行为,从而能够迅速发现“涉密信息的非法发布、传输、存储或处理”,以此“确保国家机密和警务工作的保密性与安全性”。

去年,北京对一项旨在保护国家机密的法律进行了重大修订,扩大了其适用范围。

随后出台的政府规定,要求厂商“利用新技术、新方法、新工艺,创新安全保密产品和涉密技术装备”。

这些规定于去年9月生效,并承诺对“对相关技术发展作出重大贡献”的个人和组织给予奖励。

保密也是今年展会的一个主题。

参观者需通过扫码申请才能入场,必须实名登记并提供身份证号码,通过审核后方可进入展会。

展会上,许多潜在买家身着警服,一些展商要求参观者出示警官证后方可拍摄产品。在某些情况下,产品说明书仅限执法机构购买的设备随同发放给警员。

展厅内一条醒目的标语写道:“没有网络安全,就没有国家安全”。

公安部第三研究所展示了一款号称可以监控Telegram(一款以隐私和安全著称的即时通讯应用)的工具。该所称,该工具可监控用中国手机号注册的Telegram账户,而中国手机号有严格的实名制要求。

据该机构介绍,目前该工具已收集超过300亿条消息,监控了7000万个Telegram账户,以及39万个公开频道和群组。

该机构的宣传视频展示了如何通过入侵的中国手机号登录Telegram,监控群聊中的毒品交易。

他们还表示,可以监控Telegram上涉及政治及香港相关话题的消息。研究所称,2019年香港反政府抗议者广泛使用Telegram,是开发该工具的原因之一。

在中国大陆,用户需通过VPN访问Telegram及《南华早报》网站,但来自南京的一家科技公司展示了一款能够检测此类行为的工具。

还有多家公司推广面向警务的大模型,并强调其产品基于如DeepSeek等中国开源大模型。这些AI模型据称可帮助警方更高效地分析线索、管理设备、勘查案发现场和审讯嫌疑人。

一家北京公司宣称,其AI工具可对嫌疑人进行实时心理测试,实现“智能审讯”,并迅速“突破心理防线”。

华为、科大讯飞、海康威视等大型科技公司也在展会上推广自家AI模型,宣称适用于执法场景。

我的认知突围:从文字信徒到多媒体拥趸?

土木坛子

每个人心中的成见,都是一座大山。

作为一个多年来以文字为创作载体的老博主,我曾深深地热爱文字,因为它简单、便捷,便于检索、保存和传递。相较之下,声音、图片乃至视频似乎总显得冗长而繁琐。阅读文字,信息传达得更为高效,而视频播放时需要调速来提高效率——毕竟,语言的语速远不如阅读的速度快,使得我们在主动控制上的感觉相对薄弱。

我也曾见过一些极端的文字控,他们甚至对带格式的文字嗤之以鼻,唯独钟情于最纯粹的文本文字,简洁到近乎苛刻的地步。可是,当我们看到如今各种短视频和直播内容的流行,显而易见,视频形式正以其独特魅力俘获大众的心。这无疑是对传统文字模式的一种挑战。

回想上一次阅读《乔布斯传》时,我惊叹于80年代乔布斯如何通过图形界面改变电脑的使用体验。当时,IBM等厂商仍然坚持命令行文字的操作模式,部分原因在于硬件配置限制了图形化处理的可能性。而到了今天,我们看到大多数用户更依赖于直观、友好的图形界面——无论是Windows还是苹果系统,都证明了图形界面的巨大优势(虽然Linux命令行流行于服务器领域)。或许我曾对自己固守的习惯过于执着,成长意味着要敢于对那些不再适应时代发展的坚持进行选择性放弃。

不可否认,无论是文字还是视频,都充斥着大量的垃圾信息,需要我们在海量内容中慧眼识珠。事实上,优秀的视频作品也不在少数,它们直观、信息密度高,甚至在高速网络的支持下能迅速传递到每个角落。随着AI技术的发展,这些优质视频内容同样可以被智能识别、总结和检索。或许,我只是不曾及时跟上这个时代的步伐。

如今,我终于意识到,是时候放下对视频创作、展示、传输与保存信息的偏见了。现代硬件、高速网络和先进搜索引擎技术已足以应对视频和图片信息的处理。未来,或许我们还会见到结合气味、触觉的多感官信息传递方式,使虚拟世界与现实世界之间的连接更加紧密。

在这个瞬息万变的时代,我们每个人都应学会及时更新自己的固有观念,勇敢地拥抱变化,让自己始终走在时代的前沿。这是我对自己的忠告。

AI让效率再次提升,人类该干什么?

AI vs Human beings

人工智能时代:当效率革命点燃创新之火

我很久没有为互联网感到兴奋了。这些年,它似乎被困在某种惯性中,缺乏真正触动心灵的创新。然而,人工智能的崛起,像一簇突然迸发的火星,重新点燃了我对技术变革的热情。

从ChatGPT的诞生到如今,几乎人人都在谈论人工智能。我也亲自体验过它的魔力:无论是生活琐事、工作难题,还是学习中的困惑,只需将问题抛向AI,不到5秒钟,它便能给出一个逻辑清晰、甚至堪称完美的答案或方案。这种效率的跨越,让我不禁想起人类获取信息的进化史。

从图书馆到AI:效率的跃迁

在互联网诞生前,若想查资料,我们只能奔向图书馆,在浩如烟海的目录中翻找对应书籍,再逐页检索、誊抄、总结。尽管最终能找到答案,但过程漫长而笨拙。

互联网搜索引擎的出现,将效率提升了一个量级。输入关键词,海量链接瞬间呈现,我们仍需逐一筛选、分析、整合,但至少电子化手段替代了手工检索的繁琐。

而如今,人工智能彻底颠覆了这条路径。它不再需要我们“大海捞针”,而是直接整合全网数据、预处理信息,甚至模拟深度思考,最终将答案和盘托出。这就像过去做菜需要自己找菜谱、买食材,而现在只需对AI说“我要一盘糖醋排骨”,它便能在五秒内端出成品。若口味不合,还能随时提出修正——效率之高,令人惊叹。

生产力解放:人类与AI的共生

作家郑渊洁说,他让AI以“郑渊洁风格”写一篇皮皮鲁的童话,结果AI输出的作品竟比他本人写得更好。他感慨输给了AI,但我却觉得无需悲观。AI之所以能模仿郑渊洁,正是基于他本人创作的无数经典文本。若世上本无郑渊洁,AI又如何凭空生成“郑式童话”?

这恰恰揭示了人类与AI的关系:AI是效率工具,而非创造力的源头。它的能力建立在人类已有的智慧积淀之上。当AI接管重复劳动与低效环节,信息如此容易获取,知识如此海量廉价,我们反而能腾出双手和大脑,专注于真正的创新——那些尚未被定义、被探索的领域。

拥抱变革:效率即自由

有人担忧AI会取代人类工作,但历史早已证明,每一次技术革命淘汰旧岗位的同时,也会催生新机遇。当机器替代了流水线工人,人类转向了设计、编程与服务;当AI接管了基础信息处理,我们便能更聚焦于创造、情感与战略。

正如工业革命将人类从体力劳动中解放,AI或许正将我们推向“脑力解放”的新阶段。不必为消失的重复性职业哀叹,因为社会进步的本质,正是让人摆脱“浪费时间的工作”,追求更高级的创造与价值,难道这不就是人类追求的解放与自由吗?

人工智能带来的不是威胁,而是一场效率革命。它让我们离“终极自由”更近了一步——不再被琐事捆绑,而是用技术赋能各行各业的创新,用高效率重新催生各行各业的可能性。

此刻,我仿佛回到了互联网初生的年代,那种对未知的期待与悸动再次涌上心头。与其恐慌,不如拥抱这个时代。因为AI不是终点,而是人类探索星辰大海的新起点。

2025.02.18 11:17

如果从一开始 AI 就以异族崛起的形象深入人心,或许人们的警惕和担忧会比担心被替代更真切和实际一些。而现在的情况是,人们表达担忧更像是一种时尚潮流、一种未来将至的躁动。长着人类无法理解的面孔(如果有面孔的话)的外星人和妳的亲人朋友,妳会向谁倾诉?在许多人心里 AI 不但不是异族,反倒是更可信的朋友——只是不想让朋友过得比自己好,这很人类。

fin.

人何以为人

「年」终于过去了,我终于又能在工作缝隙,不经意地听客人们的聊天;她们在聊 DeepSeek。这让我想到近期看到的两个观点,其一来自某篇英文博客文章——不知怎么我的 RSS 阅览器数据库清空了,所以抱歉找不到原文地址——大致是说:我们曾以为人工智能会帮人类洗衣做饭,人类则有时间去做更有创造性的工作,而现实是人类在做更多的琐碎杂事,人工智却被用来创作绘画、作曲、做视频。其二是刚看到如一兄说「铺床可以对抗 AI,因为这件事 AI 没法帮妳做」。一个抱怨 AI 不会铺床,一个则是用铺床对抗 AI。多么有趣。

着手研发会铺床的 AI,以便人类可以腾出时间去创作;等到 AI 学会铺床的时候,依然坚持自己铺床。这两者在我看来都是在确认自身价值和意义。归根结底,是在追问人类何以为人。人的价值既在于创造,也蕴含在那些看似琐碎的小事中。即使有一天 AI 能取代人类的所有工作,它也无法否定人的意义。

fin.

BlinkShot – 开源免费 AI 图片快速生成工具

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

BlinkShot 是一个以 AI 人工智能技术即时生成图片的免费服务,这是开源项目,背后使用 AI 加速云服务「Together AI」和图片生成模型 FLUX,这项服务特性是能在非常短的时间内依照输入的提示词生成各种图片,以毫秒为单位,生成的图片也丝毫不逊色,有兴趣的朋友可以玩玩看。

目前 BlinkShot 支持英文提示词,也可以直接叫 AI 服务帮你生成〔例如用 ChatGPT 或其他同类型服务〕,另一个方法是使用图片转文字 AI 工具,例如:Image to Prompt等工具,将喜欢的图片快速转换为英文提示词,最后稍作修改再生成想要的图片。

BlinkShot 目前没有使用的生成数量限制,还有个「Together API Key」栏位可自定义自己的 API 密钥,生成的图片素材皆可免费下载使用,AI 图片基本上也不会受到版权限制,使用于个人或商业用途都没问题。

Generate images with AI in a milliseconds

进入 BlinkShot 后直接输入提示词就会立即生成图片,整体速度非常快,过程中如果继续输入其他形容或是提示词,图片会即时更新,相较于其他同类型的 AI 图片生成器来说确实非常强大!

下方会显示生成的图片历史记录。

通过 BlinkShot 生成的图片看起来很逼真,也能依照用户需求调整成各种风格、样式,越仔细的提示词就能生成更细致准确的结果。

生成过的图片历史记录会显示于下方,可以随时切换回去查看。

在图片点击右键即可下载保存。

在图片上点击鼠标右键、选择「另存图片」后将图片保存下来即可使用。

BlinkShot 未来也会加入下载按钮,让用户更方便获取图片。

OpenAI 王炸 Sora 文转视频正式上线,新功能发布

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

就在刚刚,OpenAI Sora 正式登场。

本次发布会延续了「短剧」的快节奏风格,全程 20 分钟左右,由 CEO Sam Altman、Sora 负责人 Bill Peebles 等人主持。

OpenAI 在 X 平台表示,自 2 月份以来,他们一直在构建 Sora Turbo,后者是一个速度明显更快的模型版本,今天也将其作为独立产品向 Plus 和 Pro 用户开放。

有趣的是,由于 Sora 热度太高,大批用户涌入体验网站,导致该网站一度崩溃,停止注册登录。不给力的服务也让 Altman 连连在 X 平台安抚用户:

「由于需求超出预期,我们将不得不间歇性地关闭新用户注册,并且生成内容的速度会在一段时间内减慢。我们正在全力以赴!」

附上体验地址:Sora.com

类似于 Midjourney 的网页界面,Sora 同样拥有自己单独的用户界面,用户用户不仅能够整理和浏览生成的视频,还能查看其他用户的提示和精选内容。

在 「Library」功能中,用户可以保存自己喜欢或有用的提示词,以便未来使用。并且保存的提示词可以按需查看或修改,对于需要重复创作相似内容的用户,无疑能大大提高效率。

在工作流方面,Sora 的编辑功能是区别于其它竞品的重要亮点。

比如说,在 Remix 功能中,用户可以利用纯自然语言提示词对视频进行编辑,并通过简单的「strength(强度)」选项和滑块来控制生成的变化程度。

Re-cut 功能则能智能识别最佳画面,并支持向任意方向延伸场景。

Sora 的 Storyboard(故事板)功能则类似于视频编辑器,可以将多个提示词串联在一起,生成一个更长的视频,轻松处理复杂的多步骤场景。

搭配 Loop 和 Blend 功能,用户还能创作出无缝循环的视频,并完美融合不同片段,而 Style presets 功能则可以预设和调整生成的风格。

在技术规格上,Sora 支持 5-20 秒的视频生成,并兼容 1:1、9:16 等主流宽高比。相比早期版本,现在的生成速度有了显著提升。

另外,还有几点细节需要注意。

OpenAI 采用了灵活的积分制定价策略,积分数量因分辨率和持续时间而异,如果你早已是 ChatGPT Plus 和 Pro 会员,那就无需额外费用就能使用。

比如生成一个 480p、5s 的视频就需要 25 个积分,如果生成 480p、20s 的视频则需要 150 个积分。

此外,如果你用 Re-cut、Remix、Blend 或者 Loop 这些功能,生成的作品超过了 5 秒钟,那也得额外扣你的积分,多用多花钱,别超时,超时也花钱。

对于订阅用户而言,20 美元的 ChatGPT Plus 计划提供 50 个优先视频额度(1000 积分),支持最高 720p 分辨率和 5 秒时长。

而 200 美元的 ChatGPT Pro 计划则提供最多 500 个优先视频(10000 个积分),支持 1080p 分辨率、20 秒时长、5 个并发生成和无水印输出。

OpenAI 还在为不同类型的用户开发不同的定价模式,将于明年初推出。

对了,Sora 暂不支持 ChatGPT Team、Enterprise 和 Edu 版本,同时也不向 18 岁以下用户开放。现阶段,用户可以在所有 ChatGPT 可用的地方访问 Sora,但英国、瑞士和欧盟等地区除外。

知名博主 Marques Brownlee 提前一周用上了 Sora,并在 YouTube 上分享了他的使用体验。

他指出这款产品仍存在一些局限性。

在物理模拟方面,模型对物体运动的理解还不够深入,常常出现动作不自然、物体突然消失等问题。特别是在处理带有腿部运动的对象时,经常出现前后腿位置混乱的情况,导致动作看起来不自然。

又或者,某些视频生成结果看起来像是慢动作,而视频的其他部分则以正常速度播放,肉眼很容易察觉这种「别扭」。简言之,Sora 还是没能解决老毛病,缺乏对物理世界规律的理解。

另外,Sora 没能解决文字生成的问题,导致经常出现文字混乱的现象,而剪辑风格、文字滚动条的运动、新闻主播风格的生成则格外逼真。

不过,Sora 也有不少擅长的场景。

比如说,Sora 在风景镜头处理方面表现出色,能生成媲美专业素材的无人机航拍镜头,在卡通和定格动画风格上的表现也差强人意。

性能方面,一个 5 秒的 360p 视频通常能在 20 秒内完成生成。

不过,当涉及 1080p 或复杂提示词时,生成时间可能会延长到几分钟,但随着如今大批用户的涌入,生成速度明显慢了大半拍。

不少网友也在第一时间上手体验了 Sora。比如网友 @bennash 想生成一个视频,渲染了 22 分钟都没能成功,甚至该网站一度停止注册登录。

博主 @nickfloats 给出的评价是,Sora 在将图像转换成视频时,虽然某些特定的视觉特效没有被保留,但整体的转换效果是「清晰和令人满意的」。

Sora system card 也列出了一些值得关注的细节。

OpenAI 官方认为,Sora 为能够理解和模拟现实世界的模型提供了基础,将是实现通用人工智能(AGI)的一项重要里程碑。

官方博客中提到,Sora 是一种扩散模型,它通过从一段看起来像静态噪声的基础视频开始,逐步去除噪声并转变为最终的视频。通过同时处理多个帧,模型成功解决了一个难题:即使目标暂时脱离视野,也能确保其在视频中始终保持一致。

与 GPT 模型类似,Sora 采用了 Transformer 架构。

Sora 使用 DALL·E 3 中的标注技术,该技术为视觉训练数据生成高度描述性的标签。因此,模型能够更准确地根据用户的文本指令生成视频内容。

除了能够仅通过文本指令生成视频外,Sora 还能够从现有的静态图像生成视频,准确地将图像内容进行动画化,并注重细节。该模型还可以从现有的视频中扩展或填补缺失的帧。

为了确保安全地部署 Sora,OpenAI 基于 DALL·E 在 ChatGPT 和 API 部署中的安全经验,以及 OpenAI 其他产品(如 ChatGPT)的安全防护措施进行了强化。

所有 Sora 生成的视频都带有 C2PA 元数据,这些元数据能够标识视频的来源是 Sora,从而提高透明度,并可用于验证其来源。

与此前凭借真实人像出圈的 Flux 不同,Sora 们对上传包含人物的内容设定了特别严格的审核标准,目前仅作为试点功能提供给少量早期测试者,并屏蔽含有裸露的内容。

OpenAI 王炸 Sora 文转视频正式上线,新功能发布

大半年前,初试啼声的 Sora 赢得互联网一片喝彩。

然而,如果说一年前尚未还能对着一群演示 demo 空喊「现实不存在了」,那么在国内外各类视频模型的轮番洗礼之下,我们早已养刁的胃口很难再被同样的产品打动。

这种态度的转变源于一个简单的事实。

当 AI 要从「勉强可用」进化到「可堪大用」,用户的期待也随之升维,从「能否做到」跃迁至「做得多好」。

好在 Sora 并未在掌声中原地踏步,通过与艺术家的深度合作,他们在工作流程领域做出了显著的改进。Re-cut、Remix、Storyboard 等功能都相当实用。

甲乙方的存在决定了工作流中的沟通永远是刚需,AI 能做的是让这种沟通更有效率,Sora 的价值不在于它能做什么,而在于让创作者得以抽身于技术细节,真正回归创意的本质。

与此同时,上周引发热议的 200 美元 ChatGPT Pro 订阅计划,如今也有了更合理的价格锚点,该计划同样支持无限制访问 Sora,这种产品协同效应预计也将激发出远超预期的应用场景和商业价值。

放眼当下,用户的真金白银从不作假。

可灵 AI 交出千万级月流水的亮眼成绩单,这片蓝海的潜力已呼之欲出,对于仍在「烧钱」阶段的 OpenAI 来说,Sora 预计会成为继 ChatGPT 之后的另一个下金蛋的母鸡。

当 Sora 从「能用」「好用」,再到「妙用」,或许未来某一天,我们会发现,真正不存在的,不是现实,而是人类创造力的尽头。

完全免费 AI 绘图工具 Dreamina AI,支持中文描述生成图片

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

当前 AI 绘图工具已经全面席卷全球,你还在找一款能够用文字或图片生成的免费 AI 图像生成工具吗?分享一款由抖音旗下剪映推出的 AI 图片生成平台「Dreamina AI」,只要输入简单中文描述就能立即转成图片,甚至还能搭配多层画布进行修改、重新创作和视频生成,而且还是完全免费和无限次数使用。

完全免费 AI 绘图工具 Dreamina AI,支持中文描述生成图片

Dreamina AI 是一款由剪映推出的在线 AI 创作平台,能够帮助用户将文字描述转化为视觉艺术作品。支持多种创作模式,包括文字绘图、视频生成和图片扩展,适合专业艺术家和普通用户使用。

另外 Dreamina AI 绘图创作平台还支持智能画布功能,可以通过画布混合多种 AI 生成图片,还可以进行局部重绘或扩展画布等功能操作。

想要使用 Dreamina AI 要先用电脑网页版登入和注册会员,可以通过 Google、TikTok、Facebook 或 CapCut 移动版来注册登入。〔手机版目前会跑版建议改用平板或电脑板,至于 App Store 有 Dreamina AI App 也并非是官方推出〕

👉 前往 Dreamina AI 在线生成图片

要是首次注册账号,会跳出 Dreamina 平台要整合 CapCut 账号信息权限,直接点「确定」继续。

进入 Dreamina AI 主页面后,就可以点击「图片生成」开始使用 AI 生成功能。

接着可以再生成图像输入框内填入生成 AI 图片的文字描述〔咒语〕,不管是输入中文或英文都能够使用,实际测试 Dreamina AI 中文生成图片准确度也不差,不一定要用英文才比较高,当然也可以上传照片,依照现有图片来生成。

图片模型部分,会提供三种 Dreamina 模型效果分别如下:

底下还能够设置图片输出长宽比例,以及大小尺寸分辨率都能够手动设置,都设置完成后就按下「生成」就可以开始生成免费 AI 图片了!

Dreamina AI 在输出算是非常快,只要几秒就能生成出四种不同风格的 AI 图片,像是底下是直接生成 Lego 乐高 AI 图片海报风格图片。

说实在 Dreamina AI 生成图片效果,与当前大多数 AI 绘图工具也都不会差太多。

底下也尝试文字描述咒语来生成漫威的雷神索尔画面,会生成出不同风格和脸型效果。

用下来发现 Dreamina AI 对中文理解能力算是很强大,AI 工具基本都能理解我们在说什么,像是可以让可爱老鼠或兔子也能骑机车外卖。

连同用 Dreamina v2.0 Pro 模型来生成真人效果也非常逼真,让你看不出来这是用 AI 生成。

不过有些时候不能谈到敏感话题或文字,甚至有些上传图片有红色就会被系统认为血腥,违反了《社交自律公约》内容,遇到这情况只能换其他张照片或改用其他文字描述。

点入生成 AI 图片后,可以直接将原始图片下载到设备上,侧边还提供多种选项能够进一步调整,像是重新生成、重新调整提示、增强分辨率、润饰、局部重绘、展开或移除,以及能够在画布上编辑或生成视频等。

要是想在 AI 图片上额外修改局部画面,可以直接点入「局部重绘」功能,直接圈选划线都可以,像是我随便在画面划一下,Dreamina AI 马上就在行李箱上加入皮带配件,有如设计师能帮你随意修改,超级猛!

至于 Dreamina AI 提供的「画布」功能,简单来说就是在线 Photoshop 编辑器,能够在页面内用 AI 生成图片后,能够直接抠图,另外上传图片进行合成,侧边也有图层能够进行调整拖移,基本算是很容易上手。

以上就是 Dreamina AI 生成图片工具的技巧介绍,整体来看 Dreamina AI 算是一款功能强大、易于使用的 AI 图像生成工具,能让每个人都能成为艺术家,如果你想尝试看看 AI 绘图功能,或是想要创造出不同图片效果,倒是可以通过 Dreamina AI 来快速生成,且还能支持中文提示词,对大多数人来说也算是非常好上手。

新的阶级依据

Ai 的普及将会诞生更多不求甚解的普信男。
古典的百科全书式人类不会被赛博囚禁。

推论:
新阶级的划分依据是,是否具备物理世界生活常识。

蒸馏认知

有两种方式「通晓一切」:

1、穷具并知晓每一种可能性;
2、找到底层原理后高效推理。

定理:
1、海量数据和滔天算力是不持久的;
2、通用性和低能耗是持久的。

推论:
任何人工智能都需要蒸馏出「认知」才能活下去。

前提:
本地且联网的传感器

OCRify – 免费快速 OCR 工具,识别转换图片和 PDF 文字内容

DUN.IM BLOG

DUN.IM BLOG

我们还年轻,可不想看到这个世界处在毫无自由、隐私的边缘。

OCRify 是一个在线,通过文字识别〔〕技术将 转换为可编辑的文字,有鉴于当今的型手机甚至 AI 人工智能都能做到类似功能,对于 OCR 工具的需求可能就没有那么强烈了,但如果手边恰巧没有合适的工具,临时有图片想要复制图片上的文字内容、转存到其他编辑器还是很有帮助。

OCRify 特色是不用安装,打开、把要识别的文件拖曳上去就能自动识别内容,有最大文件 10 MB 和格式限制,支持 PDF、PNG、JPEG、WEBP、TIFF、GIF 和 BMP,PDF 部分最多 10 个页面,对于大多数用户来说应该没什么问题。

OCRify 支持多种语言的文字识别,包括亚洲、欧洲、中东和非洲的语言,例如中文、阿拉伯语、俄语、法语、德语、日语、韩语等一共涵盖了 60 种语言,几乎所有内容丢上去 OCRify 都能正确被识别、转为纯文字,但类似的工具都有可能遇到无法 100% 正确识别的问题〔例如有错字或漏字〕,记得在使用时还是要自己手动检查。

进入 OCRify 网站后可先从右上角切换语言,自带中文界面。

接着直接把要识别的图片或 PDF 文件拖曳到网站上,单文件最大不能超过 10 MB〔PDF 最多不超过 10 页〕。

选好文件后按下「开始识别」,等待几秒钟就会显示结果。

OCRify – 免费快速 OCR 工具,识别转换图片和 PDF 文字内容

以下图的图片为例,OCRify 会标记出有正确识别的文字范围,以红色的框线标注。

点击一下后就会出现纯文字格式,按下右上角「复制」即可保存到剪贴板。

还可以点击上方「仅文字」切换为纯文字内容,这里会显示从图片或 PDF 识别到的所有文字。

前面介绍的是以 OCRify 识别图片的示例,下图是识别 PDF 文件的结果,一样会标注找到的文字内容,很棒的是有些文字如果是直式方式书写,OCRify 一样可以识别、同时转为一段文字内容,不会因为直式而出现错误。

描觀念 繪感受|超微型 AI 觀念畫展

前言:

*為了減緩閱覽速度,充分感受和理解,因此採用繁體中文。

最近的工作狀態和社會新聞,讓我感覺到非常疲憊。一次次的憤怒和失望,和一次次的徒勞無功,身在漩渦當中無法抽身,只能通過一點點表達來疏解。三幅畫都是用 Midjourney 來繪制的,但 prompt 無法直接描述所要表達的觀念和感受,因此得用視覺化的語言來向 AI 描述想呈現的畫面。

這組圖,可以當作是一次超微型的 AI 觀念畫展。

*每張圖都可以通過「點擊放大」獲得完整尺寸的高清版本。

第一部分:《異類》
[ 点此可下载:经 AI 放大处理后的超高清图像 11.3MB ]

我們是怎麼看待「他者」的呢?

在公共輿論場中,尤其是此時此刻的中文網絡輿論環境當中,我們是看不到任何「人」的。一個個觀點匯聚了大量的「賬號」,牠們沒有個性、閱歷、身份,只要有一塊肉掉在地上,就會瞬間蜂擁而至,吃個乾淨。但我們很難說,「我們」不是「牠們」。因為在「我們」眼中的「牠們」,恐怕與「牠們」眼中的「我們」並沒有什麼本質的區別。

我們都是對方眼裡的「他者」。

人與人之間的觀念差異之大,如克蘇魯眷屬與地球人之間一般,亦如人類和腳下的螞蟻,並無關好壞,而是徹底的「異化」和「無所謂」。在各自的眼中,對方只是一群穿著人類服裝的「蟲子」,是與我們不在同一個世界裡的「異類」,是「偽裝」成「我們」的臥底、特工和間諜。總之,「他者」都不是「人」,「他者」就意味著「異類」,是被異化的不同於自身的存在,是被敵視的「蟲子」。

信任體系崩潰,人就不是人。

第二部分:《共鳴》
[ 点此可下载:经 AI 放大处理后的超高清图像 11.4MB ]

所以群體不再重要,也無法重要,因為在破碎的環境中無法建立起大面積的信任。我之所以不信任 DAO 這種組織形式,並非老頑固或者害怕前進,恰恰相反,作為一個向來積極主動擁抱新技術的人,我無法對人類持有這樣樂觀的想法。人與人之間的「心之壁」是與生俱來的系統限制。因為語言本身並不是一種優秀的系統,它是抽象和概括的。每一次「對話」都需要經歷至少四次「轉譯」:

來自 A 對世界的體會和理解的語言化,A 向 B 表達時將語言化的觀念輸出成的語言,來自 B 對世界的體會和理解的語言化,B 用自己語言化體系所理解的 A 的語言。

這種信息傳遞效率如此之低,因此需要大面積和海量的交流把「同類」們連接起來。

但互聯網放大了「同類」這個概念的同時,縮小了「個體」的存在感。並不是被網絡連接的人數多了,可以公開表達觀點的人多了,就等於「個體」被彰顯。因為這些「個體」並沒有作為「獨立個人」存在,牠們依然依附於各種「觀點」和「趨勢」之中,牠們的聲音也不代表著一個活著的人類的思想,而是一股潮流和陣痛當中的一次次伴隨。無論是網絡語言暴力,還是人人都掛在腦門上的 MBTI 性格分類標籤,都只是把「個體」隱藏在事件背後的一種障眼法。

人腦會本能地「簡化」信息,以降低能耗比。這是生存策略,也是系統的短板。一個人要與另一個人產生情理上的連接,不僅需要花時間,還需要有耐心去解開雙方轉譯過程中的一次次「雞同鴨講」,必須兩個人同時站在對方的位置上去理解對方的語言,才能達成共鳴。他們必須用最複雜的方式,走通這條最短的路。

因此,共鳴只存在兩個個體之間。

我不信任 DAO 的最主要原因,就是不相信這種「共識」可以不被「簡化」和「異化」地傳遞到每一個參與者當中。只要這一點無法在技術層面上落實,那麼任何一種觀念或者 DAO 都與舊世界無異。

第三部分:《武陵》
[ 点此可下载:经 AI 放大处理后的超高清图像 24.1MB ]

但如果可以通過限制准入標準的方式,把「個體」簡化或者降維成不容易產生差異的「標準型號」呢?

這源於我對《桃花源記》的一種怪異解讀:

武陵漁人所去到的「桃花源」並非一個地區,而是一顆巨大的桃樹。他所穿過的「山」只是巨大桃樹根部的一處彎曲,那個彷彿若有光的「洞」,不過是盤根錯節的樹根中間的一處縫隙。之所以目之所及的地方都是落英繽紛,中無雜樹,是因為他此時身處桃樹之中。他在遇到和穿過桃樹根的時候,就被縮小成了螞蟻大小的微縮小人兒了。因為長期處於這樣的螞蟻社會中,當中的人們自然也就成了「小國寡民」的狀態,行為和思想也因此被簡化,成了雞犬相聞、夜不閉戶的簡單狀態。

南陽劉子驥尋不著這個地方,不是他找不到,是因為他沒有經過樹根那一輪「降維標準化」。身為一名「高尚士」,他應該是一個見識、思想異於常人的「個體」,怎麼可能輕易被「簡化」呢?他與桃花源的協議不兼容,自然是無法進入和連接了。

理想模型之所以是理想,就是因為理想實驗環境往往就意味著屏蔽了諸多複雜的干擾因素,簡化了條件。

這樣好麼?我並不這麼認為。

複雜性是人性的基礎,放棄了人性的豐富與複雜,化身成桃花源中的白衣男女,無怨無恨,亦如死人一般。因此常有把桃花源解做「誤入墳塋」的故事版本,這並非沒有道理。我們在排練《暗戀桃花源》的時候,也曾反覆思考過,為什麼其中的白衣男女與世俗社會中的老陶、袁老闆、春花如此不同?陶袁花的故事可笑,但白衣男女也可笑,他們並沒有什麼差別。有沒有煩惱,都很可笑。

可笑是矛盾的表現,也是價值所在。

如果消解矛盾和分歧的方式是所有人都歸於 LCL 之海,那麼當我中有你、你中有我,我們彼此不分的時候,所謂的「我」還有什麼存在的意義呢?如果一切都要歸於熵,那所有的分歧和衝突對立,也只是笑話。

唯一可做的,也只有減緩自己的熵增。


後記:

為了創作出對應於「觀念」和「感受」的畫面,我花了很多時間在 prompt 的調整上,因為用語言生成畫面這件事,本身就充滿了對語言的誤讀和轉譯,而 AI 基於概率的運行方式,也增加了難度。因此,把腦海裡的觀念和情緒先通過語言表達出來,變成一種對某一類具體畫面的描述後,才能在一次次的 /imagine 中找到更合適的語言和畫面。

這種創作體驗很奇特。

過往的繪畫訓練或寫作表達,手頭功夫的訓練是至關重要的。但使用 AI 畫畫來表達觀念,會因為表達這個目標倒逼我把觀念拆解成更為細緻的狀態,不止是邏輯的細化,更需要把細化的觀念給圖像化,用視覺語言來描述它。

同樣是昆蟲人,面容的風格、眼神的選擇、肌理所呈現的氛圍、服裝的細節,都會影響表達的效果。選錯了表達方式,很容易就會得到一個一眼看上去就遭人討厭的怪物,或者因為太像人而失去了異化的感受。那樣就和我想表達的意思,背道而馳了。

*部分被放棄的方案

關於共鳴那部分,應該是我做了最久的。

因為「共鳴」太抽象了,怎樣的人物狀態、神情和與環境的關係,都試了很多種畫面邏輯。從山上到海裡,從逆光的傍晚到深夜的月光,從全身像面對面站立到半身和面部的特寫,面孔的表達又在歐美人、亞洲人、東西混血中嘗試了一些,畫面色調和畫風也會有很直觀的影響。這麼「簡單」的畫面,想要找到那個比較精準的感覺和情緒,也花了兩天,才從約 300 個方案中找到最恰到好處的那一個。

*部分被放棄的方案

網上有很多用 Stable Diffusion 畫美女和裸女的,說實話,好看的那些確實顯得很「精緻」,哪怕是色情畫面也精緻得嘆為觀止。但這就和攝影術發明之初類似,攝影像油畫是沒有任何意思的,它應該有它的新的用法和創作思路。對我來說,AI 繪畫的最底線應該是輔助我把腦海的觀念傳遞出來,而不是畫很多精緻得像量產網紅一樣的裸女畫。

我並不是反對量產的 AI 裸女畫,只是想從創作的思路去看待:當刺激感官衝動成為 AI 可以輕而易舉做到的事情之時,更複雜和更深入的連接才是人類創作者應該去嘗試的領域。

這確實不容易,但 AI 讓這件事方便了很多。

借行业科普聊了一次 AI 与设计师的关系

上个月去上海之前,@取景框看世界 在微信上邀请我一起做一期关于设计行业的科普视频,面向学生群体做一次对行业整体状况的分享。这次是 B站 向他发起的约稿,也是他频道的主要内容类型之一。答应他后,从上海回来我就根据自己这么些年的体会和反思,录了一期比较掏心窝的内容。由于参与的人比较多,直到前天,节目才终于上线。

🎥 点击图片跳转到播放页面

因为参与的人数比较多,我说的话也比较多,所以在汇总的成片里需要剪掉一些。但我又觉得难得录一期视频(从去年11月到现在都没有更过视频了),为了保证表达的完整性,我还是得有一个自己的版本。但因为实在忙得顾不过来,于是麻烦 @小雨 帮我把这条视频剪了出来。

毕竟是 @怪物尚志 的御用摄影/后期,有他的帮忙,我的视频里头一回多了许多配合文案的动画,比我一个人在镜头前单口相声好看多了。这一期花絮,也在昨天发了出来,跟正片错开一天。

🎥 点击封面跳转到播放页面

这期视频的封面是我昨晚用 midjourney 画的。

在这条视频里,除了科普工业设计的一些基本概念和行业现状,我也特别聊了一下 AIGC 和设计师之间的关系。前两个月虽然一直很忙,但我也一直在关注 AIGC 的动向。这两个月的变化实在是过于惊人了!

以下是我去年八九月用 midjourney 画的一些东西:

然而在这短短半年内,版本已经从当时的 v3 发展到了现在的 v5。ChatGPT 也从 GPT-3 发展到了 GPT-4,坊间传言 GPT-5 的研发已经完成且爬完了全网所有视频,可以直指某一条视频中的某一段话,只是还没发布。可以说开年后的这两个月内,AIGC 的发展速度已经大大超乎了预料,甚至正处于失控的边缘,它们正在开始颠覆一些东西。将来会发生什么,无法预料,但一定有什么事情已经在发生了。

所以我觉得,无论如何,再忙也得重新用起来。光是跟进各种新闻和消息是不行的,midjourney 前两天刚发布了由图片转译成 prompt 的新功能,多模态的 AI 已经不远了,这会更进一步推动人和 AI 之间的交互。我觉得,自己还是得保持使用状态才行。所以前两天我又重新充了值,开始体验它的新版本。

我先试着画了一些机甲的东西,例如这样的:

上面的两张的用 prompt 直接生成的,但下面的两张,是用 /remix 命令修改了部分描述词后的新图。可以看到下面的图和上面的图保持了相关性,于是我想试试,如果用这个命令替换背景会是什么效果,于是有了这组车的图:

上面的两张图是用 prompt 直接生成的,当我用 /remix 替换了背景描述的 prompt 之后,就生成了下面的两张。更换环境之后,车辆的姿态和镜头视角几乎没有变化,车身的反光与环境之间的关系也很自然,这个效果已经可以说非常惊人了!

然后,我随便画了一些白色的机器人站在燃烧废墟上的场景:

用 /remix 替换了机器人配色部分的描述词后,生成了下面这样的图:

对 /remix 有了基本的体感之后,我开始尝试用 /blend 命令来做一些融合的实验。

首先,我随便描述了一个赛博少女,得到一些随机的图:

接着,我再随便生成一个红发少女:

材料准备好之后,开始把它们进行组合。

第一次先尝试融合两张图,一个是游戏画风的机甲人,一个是二次元的赛博少女。

它们俩合成后,得到了以下这个人物:

新角色具备其中一张图里人物的长相特征与体态,也有另一张图的配色和机甲特点。虽然得到的结果具有随机性,但既然可以这样融合,那么应该也可以通过 /blend 命令来得到一些更有目的性的创作。

有了第一次的体验后,第二次我用三张图片进行合成:

图一是现画的半透明金属机器人,图二是上面准备好的红发少女,图三是现画的骑士。

这三个合成出来的新角色,同时具备了细碎的金色细节、波浪红发、银白色盔甲:

但这不是我想要的,我想试试加大红发少女的比例。在垫图的方式下,可以通过 –iw 命令来分配各个图片之间的权重占比,但是在 /blend 中不能这么操作。于是,我想通过把合成的新图作为素材,再一次与红发少女进行融合,并加入机甲的元素来强化她身上盔甲的质感。

二次合成使用的图,如下:

合成出来的新角色我非常满意!

她既有红发少女面部和眼神的特征,又把两副银白外甲融合得非常优雅,也保留了初始半透明金属机器人遗传下来的金色金属关节的特征,又做出了图三机甲的坚硬感和图一外甲的银白光泽。这一次的融合很成功。

但如果 /remix 可以局部替换特征,那么这些没有写 prompt 而是通过 /blend 直接合成的图,能否通过 /remix 加入新的 prompt 来修改已有的特征呢?

为了让实验效果明显一些,我想让盔甲的白色部分比例缩小,增加金属部分的比例,于是就先把这批图重新刷了几遍,直到出现肩甲是金色的变异版本:

然后不断在此基础上进一步变异,强化金色肩甲的特征:

所有图片均可以点击放大下载原图

准备好之后,我在 /remix 中添加新的 prompt:pink armor

以下是修改特征后的结果:

所有图片均可以点击放大下载原图

整体的效果我还是挺满意的。一来,新生成的人物很好地保持了最初红发少女的眼神和神态;二来,金色金属被替换成粉色金属后,金属质感的表达是正确的。虽然头发也一起变成了粉色,这确实是没完全理解指令,但原有的发色搭配新的粉色盔甲也确实不是很和谐。

到此,重新开始用 AIGC 工具的热身完毕,找回一些感觉了。

至于这期视频封面里用到的车图,是我昨晚用 Maserati 和 Ferrari 以及 Apple 和 Tesla 分别杂糅出来的缝合怪。虽然乍一看好像没什么新奇的,但是如果我把去年八月底用 midjourney 画的汽车拿出来对比,就会意识到这是多么疯狂的进化速度了:

上面三个是去年八月用 v3 画的车;

下面这些是昨晚用 v5 画的车:

所有图片均可以点击放大下载原图
视频封面使用的图片
所有图片均可以点击放大下载原图

虽然工业设计有大量的细化和落地工作是 AI 无法干的,但从目前来看,无论是 midjourney 还是 Stable Diffusion + controlNET 都已经可以很好地帮助设计师完成概念发散和快速枚举了。这样的图像质量,通过垫图、remix 和 blend 的组合使用,完全可以在创意初期快速拉出一批高质量的「草图」,设计师可以把更多的精力放在对方案思路的推敲、对细节的考据以及各个环节的沟通协调上。

从今年二三月开始到往后的十一二年,人类社会将迎来一场以破坏为开端的变革和创新。

无论我们是否愿意,都将一起进入新的世界。

用 Newbing 辅助写的第一篇 blog / The first blog to be aided by NewBing / NewBingによって助けられた最初のブログです

一週裡有一半時間都坐在這裡工作 / I spend half of the time in a week working here / 私は一週間の半分の時間をここで働いています
我讓店裡特意給我保留的專用裂口杯 / I asked the store to keep a special slit cup for me / 私は店に特別なスリットカップを取っておいてもらった

原本被通知早上要和客戶開會,騎到平時停車的地方時卻被臨時告知先不開了。因為起來得比平時早一些,所以覺得有一點睏睏的。於是,就在店裡坐著冥想了五分鐘,借倆口咖啡因下肚先回點血。

I was originally notified that I had to meet with a client in the morning, but when I rode to the place where I usually park, I was told that it was not going to happen. Because I got up earlier than usual, I felt a little sleepy. So, I sat in the shop and meditated for five minutes, and took a couple of sips of caffeine to get some blood back.

元々は朝にクライアントと会うことになっていたのですが、いつも駐車する場所に着いたら、やめることになったと急に言われました。普段よりも早く起きたので、少し眠気がありました。そこで、店の中で座って5分間瞑想し、カフェインを2口飲んで血が回るようにしました。

在最近幾次冥想的過程中發現,Apple Watch 的這個呼吸頻率對我來說已經偏快了,如果完全按照我自己的節奏來控制,起碼得是 3 次,或者 2.5 次這個頻率,但 Apple Watch 已經不能設置更慢的呼吸節奏了。

I found out in the last few meditations that this breathing rate of Apple Watch is too fast for me. If I completely control it according to my own rhythm, it should be at least 3 times, or 2.5 times this frequency, but Apple Watch can no longer set a slower breathing rhythm.

最近の瞑想の過程で分かったのですが、Apple Watchのこの呼吸頻度は私にとっては早すぎます。自分のリズムに完全に合わせてコントロールするなら、少なくとも3回、あるいは2.5回この頻度でなければなりませんが、Apple Watchではもう遅い呼吸リズムを設定できません。

剛才測了一下時間,我三次呼吸(一呼一吸)的總時長是 2:03 (兩分零三秒)。這樣的話,換成 AW 的呼吸頻率計算方式應該是「每分鐘呼吸 1.5 次」。

I just measured the time and found that the total duration of my three breaths (one inhale and one exhale) was 2:03 (two minutes and three seconds). In this case, using AW’s breathing frequency calculation method, it should be “1.5 breaths per minute”.

さっき時間を測ってみたら、私の3回の呼吸(一呼吸)の合計時間は2:03(2分3秒)でした。この場合、AWの呼吸頻度の計算方法に換算すると、「1分間に1.5回呼吸」となります。

*以上英語和日語翻譯採用 New Bing 的 AI 完成。

*The English and Japanese translations are done by New Bing’s AI.

*以上の英語と日本語の翻訳は、New Bing の AI によって行われました。

但是,翻譯完之後,它居然一直反問我新的問題,是對我和我的行為感到好奇嗎?

But after translating, it kept asking me new questions. Is it curious about me and my behavior?

しかし、翻訳した後、新しい質問をずっと聞いてきました。私と私の行動に興味があるのでしょうか?

不是的。據我所知,它只是一個根據字詞關係來生成對話的超大模型,這種對話其實非常可能來自人類語庫中不要讓話掉在地上的社交禮貌用例。所以,這種反問並不能證明這個對話 AI 已經具備了意識。

No. As far as I know, it is just a huge model that generates dialogue based on word relationships. This kind of dialogue is very likely to come from human language libraries that do not want to let the conversation fall to the ground. Therefore, this kind of rhetorical question cannot prove that this dialogue AI already has consciousness.

いいえ。私の知る限り、それは単に単語の関係に基づいて対話を生成する巨大なモデルです。このような対話は、会話を地面に落とさないようにする人間の言語ライブラリから非常に可能性が高く来ています。したがって、このような反語的な質問は、この対話 AI がすでに意識を持っていることを証明できません。

AIGC 和 VIS 的类比

大概是2016-2018年间,我曾经和我司两任平面设计师说:

你们现在的技能在将来用处不大,但不代表平面设计就到头了。本质上 VIS 和 AI(那会还没有 AIGC 这个说法)是差不多的事情,前一个是你设定好规则,然后在不同的应用场景下不断组合复制,后一个是它学会你教它的规则,它来组合复制。一个是手工活,一个是工业化,他俩只是效率的差别。你们未来需要教会这些 AI 什么是好设计、如何做设计,让它释放你的体力劳动,你把时间腾出来考虑更复杂的事情。

那时候,我判断这个事情就是十年左右,没想到,事实上只用了五六年。

当然,以上只是高度简化的说法,但大意如此。

* 拓展阅读:https://mp.weixin.qq.com/s/pv6ECT8WR4tdNhsYiATt2w

让 MJ 学我画两张小画儿

昨晚吃饭前跟儿子一起画画,我随便画了一下我们在 Minecarft 里的第二个家,和随便画的一个岩浆包围的高堡:

后来想说看看 Midjourney 能模仿成怎么程度,就丢进去试了一下:

emmm,画得还行……

就是画风不太相关,它有它的训练痕迹,哈哈哈哈哈哈哈~

测试所使用的 prompt:

Tree house, jungle, rainforest, simple little house –sref+空格+两张手绘图的地址 –ar 9:16 –s 50 –v 6.0 –style raw

艺术可以糊弄,体力劳作也是高级智能

昨天发现 AAAny 更新了发图的功能,于是就顺势发起了一个讨论 AIGC 的话题

轶轩在话题下问我为什么对外发表的图都是一些细节比较丰富的类型,是否有基于 AIGC 的生成方式而做的一些突破方向的尝试。我觉得,针对这个问题,我可以在对他的回复上,再做一期视频来谈一谈我的观点。

用于风格参考的马列维奇的画作
基于马列维奇而生成的《城堡下的人群》

但与此同时,我也想做一些「简练」或「抽象」的图来辅助说明我的看法。于是,今天在工作之余,用一些碎片时间,做了一些图出来。

对此,我尝试比较随意地做了一些「东西」。它们都没有什么明确的「表达」,仅仅只是我随手写的一些 prompt,或者就是在 Midjourney 的社区里复制修改的 prompt,最终出来的东西都是一眼看上去有一些「意境」或者没那么精致细节的但表现比较能唬住人的图像。

你会发现,在这些人类认为偏「抽象」的表达上,AI 反而是比较容易做「好」的。

但是,这种好不是真的好,只是这些风格上,并不需要对细节有很认真的考据,在表现层面上是非常容易「糊弄」的。

这也是现当代艺术作品常常被人诟病的原因之一,因为那些作品浓缩了大量的思考和抽象提炼,但表现形式上,其实并没有比传统艺术更复杂,或更需要技艺和体力上的付出。也就是说,作为当代艺术最核心的「观念」,在完全不需要理解的情况下,一个外行的人或者一个数据量管够的 AI 就可以模仿出「看上去像那么回事」的东西。这种模棱两可的状态,恰恰是江湖神棍和 AIGC 擅长处理的对象。

这里说的「糊弄」「神棍」并非贬义,而是借着世俗的话语体系来表达,这样的「生成作品」并不需要 AI 具备「意识」和「创意」也可以轻松地实现。

那么,什么东西是更难的呢?

细节,是令人信服的细节。

这些是我用 AI 生成的男士剃须刀的设计方案。

你会发现,这些方案咋一看是那么回事,但只要你多看两秒,立刻就会意识到它不对。它们的空间关系、形态的处理、物理交互的关系、电子器件的布局,通通都有很大的问题。这些就是不可信的细节。

因为 AI 实际上并不理解它学习的那些图像。

这些令人信服的关键点,是无法糊弄的。因为它们当中包含了大量精确的思考和训练,也包含了海量的脑力和体力劳动,如果一个「智能体」不理解一个图像背后的复杂逻辑,那么它就没有办法真正地创作出这个对象。它只能模仿,只要模仿得足够像,就可以唬住外行。但是对于以此为生的从业者,这样的智能工具,还不足以成为生产力。设计师可以用这样的工具拓展自己的思维,但这些过程并不能替代设计行为。

从创意到落地,中间还有漫长的路需要人类设计师去走完。

现阶段,更适合工业设计使用 AIGC 的方式是这样:

我的意思并不是让 AI 画手绘图,这仅仅是一种表现方式。但是,这是一种不需要追求精确的表达方式,很适合 AI 用「抽卡」的方式来快速堆想法。除了这种,当然也可以让它生成上面剃须刀那样的图,但同样的,目的不在于出方案,而是借助 AI 的海量数据库,快速地堆出一批发散性思维的「胡编乱造」的混杂图像来。

人类的视野有限,但 AI 看得一定比人类个体的平均值多。

工业设计不是天马行空地想象,它是一种「劳作」。

从初期的构思,从草图推延到模型和效果图,再从设计方案导入结构设计和工艺、制程,这意味着工业设计不是一项纯脑力劳动,不是一种只运行在计算机里的行为。它包含的体力劳作同样是设计的一部份,甚至可以说,是更关键的那部份。这种体力劳作,不仅仅是肌肉和工具的配合,更是人脑对环境、事件、社会群体、物质的反应和处理,设计师的动作意味着这个人对世界的认知。这种程度的认知,对于只运行在计算机内,仍然缺少复杂的传感器和理解过程的 AI 而言,暂时还是无法实现的。

我当然相信它未来会具备这样的能力,但是在目前的技术条件下,依然需要大量的人类来完成这些真正代表了「智能」的「体力劳作」。

欢迎加入我们的讨论:

https://aaany.app/aaa/ltwu3txza

想注册体验 AAAny 的话,请给我留言

我会给你留言的邮箱发送注册邀请码

經濟再差也不能公開談論

經濟狀況究竟有多糟糕呢?從各大品牌在售後策略、降價思路和運營的混亂程度等方面的表現,均可窺見一斑。尤其是當你置身於自媒體、電商與品牌運營三者的交匯點上,這種巨大的荒謬性將更加明顯。

上週末出差重慶,兩周沒在家,難得一個週末,結果倆人坐下後就被各自工作群里的事情纏著,不是回消息就是打電話,咖啡都沒喝上一口。

在國內的社交媒體似乎不讓提「經濟不好」這樣的事,與之相關的話也會被限制,索性我就轉成日語來發了:

経済状況は本当にどれほど悪いのでしょうか?各大ブランドのアフターサービス戦略、値引きの考え方、そして運営の混乱度などから、その一端を窺い知ることができます。特に、個人のネットワークソーシャルメディア、ECサイト、およびブランド運営の交差点に立つと、この巨大な不条理さがさらに明白になります。

先週末、出張で重慶に行ってきました。二週間も家に帰っていなかったので、久しぶりの週末を楽しみにしていたのですが、結果として、座った途端、それぞれの仕事グループからの連絡が絶えず届き、メッセージを返したり、電話をしたりすることに追われてしまいました。コーヒーすら一口も飲めないままです。

為什麼是轉日文不是英語呢?因為即便是英語,在內地的網絡環境里也顯得有些直白了。日語反而更有「似乎知道在說什麼,但根本看不懂」的戲劇化的「陌生化」的效果。

好不容易,終於把翻了一年的《夜航西飛》讀完了。

這是我今年讀完的第三本書。

昨天去宜家看洗手檯和鏡櫃,直到在餐廳排隊前一秒,都沒想起宜家給我發的領生日蛋糕的短信。可就是那麼巧,下周生日,昨天正猶豫要不要去店裡看看,我就慫恿筱燁說想幹就幹,這一來才想起有一個蛋糕等著領。這就是天注定的意思。

苹果停车转 AI 将引发人才大震荡

1、没有 AI 的汽车、手机、电脑、平板等,将是一堆废铁;

2、一家公司的核心战略不能同时放在两个大方向上。

综上,停下造车全攻 AI 是非常明智的。

连键盘侠都知道「不难」的造车,没造出来不是造不出来,是制定的目标太远太高。苹果之前想一步到位搞出 L4 的移动座舱,但现阶段的人类还没有办法,这太难了。在他们之前的设想中,自动驾驶的汽车和 Apple Vision Pro 是可以放在同一个场景里的。但很显然,这个步子太大了。用新势力们的方式当然可以,但那不是苹果想做的。

最关键的是,AI 的大爆发是此前大家都没料到的。没有这事儿,车还是一个重要的方向,但这一波爆发的 AI 不是资本热潮,而是实打实的浪潮了,此时不全力转向,是真的会死的。况且苹果并不是没有在 AI 上投入的,这些年一直都在积累,只是权重还没拉到那么高。现在切方向,即是大势所趋的必须,也是归拢资源的必要。

过去 Jony 可以对供应商说,这里有一桶取不完的钱,你能做到你就能拿走,以此把工业设计拉高到一个令人望尘莫及的程度;今天的苹果比二十年前拥有更多的现金,有自己的芯片和庞大的人才库,有海量的设备和训练数据,可以说:

比起造车,AI 才是更适合苹果干的事;

干好 AI 所需的人才、数据、算力,也是他们的优势。

以苹果的财力,下这样的决心,恐怕要出现一次人才流动的大震荡。

原文发布于知乎提问:

苹果取消探索十年之久的电动汽车项目,将团队转向生成式 AI,原因有哪些?会带来哪些影响?

表达的精度就是人类外延的尺度|Midjourney 
V6 Alpha 自然语言生图测试

Midjourney V6 的质感和细节,真的是飞跃式的成长!

和今年三月相比,已经完全脱胎换骨了。对自然语言的理解和再表达,也已经在渐渐脱离「咒语」的局限,结合 ChatGPT 的语言转译,一个人能够用母语把尚不明确的观念表达清晰,愈发显得重要。

点击图片,可查看原始尺寸高清大图:

当 AI 越来越擅长理解人类的自然语言,我们就愈发迫切地要掌握「用语言表达思想」这件事情。

因为语言的精度和颗粒度,将会在人类与 AI 的相处、合作中,展现出人类智力的上限所在,以及外延的纵深能够得着多远。

Upscale from Variations
Upscale(Subtle)
Upscale from Variations
Upscale(Subtle)
Upscaled (Subtle)
Upscaled (Creative)
Upscaled (Subtle)
Upscaled (Creative)
–Style 50
–Style 100
–Style 250
–Style 750
–Style 1000

❌