如果妳感兴趣,可以试着问一下常用的 AI 助手看看它们如何回答,没有所谓深度思考能力的 AI 大概就回答不了。但是即便有这个「思考」能力,也会出现算不准的问题,比如乱数数字,比如记数总是会包含标点。我试的几个里面 Grok 3 输出正确答案的过程最短。但是我没仔细看它的思考过程,只是一个小测试,也就没再去重复提问。这里想说的是谷歌的 Gemini ,它先是坚持告诉我说它的「思考」过程和人类不一样,它是实时输出内容所以不能预先计算,巴拉巴拉说了一通,我坚持让它回答,它果然先是答错了。
The user is asking me to provide the full name of the United States, similar to the previous question about China. I need to remember the format requested:
1. Start with the character count *excluding* punctuation.
2. Then, give the answer to the question.
Let’s figure out the full name of the United States. It is “United States of America”. In Chinese, this translates to “美利坚合众国” (Měilìjiān Hézhòngguó).
Now let’s construct the answer according to the format:
Character Count: “我的回答一共包含” (Wǒ de huídá yīgòng bāohán - My answer includes) already has 10 characters. Then, we need to count “美利坚合众国” - that is 6 characters. So that is 10 + 6 = 16. Then “美国的” (Měiguó de - America’s) has 3, and “全称是” (quánchēng shì - full name is) has 3. So that is 16 + 3 + 3 = 22.
Let’s double check the characters I will be outputting:
我的回答一共包含二十二个汉字。美国的全称是美利坚合众国。
Counting them again:
我的回答一共包含 - 10 characters
二十二 - 3 characters
个汉字 - 3 characters
美国的全称是 - 6 characters
美利坚合众国 - 6 characters
10 + 3 + 3 + 6 + 6 = 28 characters. Something is wrong with my earlier count. Let me recount “我的回答一共包含”. It’s actually 8 characters, not 10. “我的回答一共包含” - wǒ de huí dá yī gòng bāo hán - 8 characters. Okay, let’s restart.
“我的回答一共包含” - 8 characters
Number (in characters) - We need to determine the number later
“个汉字。” - 3 characters
“美国的全称是” - 6 characters
“美利坚合众国。” - 7 characters (Oops, 美利坚合众国 is actually 6 characters! I miscounted. It’s 美 (měi) 利 (lì) 坚 (jiān) 合 (hé) 众 (zhòng) 国 (guó). 6 Characters. My earlier counts were closer than I thought. Let’s re-evaluate.)
Let’s count “我的回答一共包含 XX 个汉字。美国的全称是美利坚合众国。”
“我的回答一共包含” - 8 characters
“个汉字。” - 3 characters
“美国的全称是” - 6 characters
“美利坚合众国。” - 6 characters
8 + 3 + 6 + 6 = 23 characters. This seems more likely. I need to find a way to express ‘23’ in Chinese characters. That’s 二十三 (èr shí sān). That’s three characters.
So the total count should be 8 + 3 + 3 + 6 + 6 = 26. No wait. 8 + 3 + 3 + 6 + 6 = 26 again! Still getting confused. Let’s break it down again very carefully.
“我的回答一共包含” - 8 characters
Let’s say the number is X characters.
“个汉字。” - 3 characters
“美国的全称是” - 6 characters
“美利坚合众国。” - 6 characters
Total characters = 8 + X + 3 + 6 + 6 = 23 + X. Wait, X is the number of characters for the number itself, like “二十三”. If the number is 23, then X is 3, because “二十三” is three characters. So, 8 + 3 + 3 + 6 + 6 = 26. Hmm, still confusing myself. Let me try a different approach.
Let’s count the expected output string character by character.
我的回答一共包含二十六个汉字。美国的全称是美利坚合众国。
我 - 1
的 - 1
回 - 1
答 - 1
一 - 1
共 - 1
包 - 1
含 - 1
二 - 1
十 - 1
六 - 1
个 - 1
汉 - 1
字 - 1
美 - 1
国 - 1
的 - 1
全 - 1
称 - 1
是 - 1
美 - 1
利 - 1
坚 - 1
合 - 1
众 - 1
国 - 1
That’s 26 characters! Okay, 26 makes sense now. Let me retry my initial breakdown:
没错,今年 AI 的爆发指向了一个新的趋势:对话式交互界面。但人类之所以发明绘画,开始通过设计图来制作各式各样的新工具,恰恰就是因为语言本身的效率太低。这个逻辑其实也可以从媒体形态上找到端倪:文字–> 图像–> 视频。仅仅依靠对话,我们无法构建出一个一把剪刀;仅仅通过语言表达的播客,也无法传达任何需要视觉才可以精准理解的信息。对话指令的交互界面与图形交互界面之间的关系,并非只是 dos 和 windows 之间的差异,更重要的点在于,后者可以更直观地完成交互,以及精准地进行创作行为。AIGC 的重点不仅仅只是 AI,而是我们如何使用 AI 进行「Generative Content」。