Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

A brief history of the Secure Enclave

By: hoakley
30 August 2025 at 15:00

Inside every Intel Mac with a T2 chip, and every Apple silicon Mac, is a secure enclave, originally referred to as its security enclave. The subject of a flurry of Apple’s patents from 2012 onwards, this was introduced in the A7 chip inside the iPhone 5s and iPad mini 3, 12 years ago in September 2013, where it brought biometric authentication in Touch ID.

iPhone 5s

Protecting the most important secrets in a computer is a great challenge. No matter how secure you try to make the main processor and memory, as they’re exposed to direct attack, isolation can only be relative and temporary. An alternative approach is to move the most secure data and its processing into a secure enclave and its processor, and that’s the architectural solution chosen by Apple in what it patented as a security enclave, filed in September 2012, a year before its release in the iPhone 5s. Engineers credited for that patent are Manu Gulati, Michael J Smith and Shu-Yi Yu.

Successive iPhone chips steadily improved their secure enclaves, and by the time the iPhone 7 was introduced in September 2016, with its A10 Fusion chip, its secure enclave was handling encryption and authentication but not replay prevention. It also had EEPROM secure storage, and an AES engine with DPA protection and lockable seed bits. When the first Intel Mac with a T1 chip was released a couple of months later, that was based not on the A10 but the S2 used in the Apple Watch Series 2. The T1 thus doesn’t really have a secure enclave as such, although it supports Touch ID.

An early and thorough account of these secure enclaves was presented by Tarjei Mandt, Mathew Soling and David Wang at Black Hat USA in 2016. This appears to be the only such account apart from the section in Apple’s Platform Security Guide, most recently updated in December 2024. Apple’s engineers continued to gain new patents, covering trust zone support (filed in 2012), key management (filed in 2014), and most relevant to Macs, Pierre Olivier Martel, Arthur Mesh and Wade Benson’s patent for multi-user storage volume encryption, filed in 2020.

T2 chip

The first Macs with a true secure enclave are those with a T2 chip, starting with the iMac Pro in December 2017. Those are based on the same A10 Fusion chip from the previous year, and were already lagging the iPhone 8 in this respect.

The T2 secure enclave is another co-processor system, run by a Secure Enclave Processor (SEP), a 32-bit ARM CPU running its own operating system, sepOS, based on a specialised L4 microkernel completely different from those used by Macs and Apple’s devices. It has its own secure storage (EEPROM), and a Public Key Accelerator for signing and encryption/decryption using RSA and ECC methods. Outside the enclave is a dedicated AES256 encryption/decryption engine built into the data transfer path between the internal SSD and main system memory.

M-series chips

The big leap forward for Macs was the release of the first models featuring M1 chips, which caught up with the features of late versions (after autumn 2020) of the A12 and A13, with Apple’s second generation Secure Storage Component.

Perhaps the most significant of its improvements are measures to prevent replay attacks. Those are best illustrated with FileVault. Let’s say that you didn’t enable FileVault at first, but left your Apple silicon Mac to handle the encryption of its internal Data volume without the added protection of your password. That would mean that its volume encryption key (VEK) was generated internally by the Secure Enclave, and stored there. If you then turned FileVault on, the VEK would be encrypted using your password and the hardware key. In the T2 chip, it might be possible to use the old VEK to decrypt the volume. In the secure enclave of an M-series chip, that type of replay attack is prevented by the revocation of all previous events and records.

Other improvements include the use of second generation secure storage incorporating counter lockboxes to enforce limits on the number of passcode attempts allowed, instead of an EEPROM, and a better Public Key Accelerator.

Currently, the secure enclave is known to protect the following:

  • encryption keys for Touch ID, FileVault, and the Data Protection (iCloud) keychain (but not file-based keychains);
  • that Mac’s Unique ID (UID) and Group ID (GID);
  • Touch ID control, and (on older devices not Macs) Face ID using a secure neural engine; in recent devices and M-series chips, that’s implemented as a secure mode in the main neural engine (ANE);
  • Apple Pay handling;
  • Activation Lock, through the Owner and User Identity Keys;
  • signing and verification of LocalPolicy for boot environments (Apple silicon).

Communication between the CPU and SEP is performed using a dedicated mailbox whose function is detailed in Apple’s patents. Further information is also provided in the Platform Security Guide.

FileVault encryption

It has been stated widely (even here) that the secure enclave in T2 and Apple silicon chips contains a hardware encryption/decryption unit and acts as the internal SSD’s storage controller. In fact, as shown in the original patent of Martel and others, and now in the Platform Security Guide, the AES engine responsible is located outside the secure enclave, together with the Flash controller, and has a secure link to the enclave.

During SEP boot, it generates an ephemeral key to wrap keys to be used by the AES engine for encryption and decryption. That key is sent from the secure enclave to the AES engine over the dedicated connection between them, then used to protect keys transferred from the enclave to the AES engine. That ensures an unprotected key is never exposed outside the enclave and AES engine.

The Apple silicon secure enclave is by no means unique. ARM TrustZone, other Trusted Execution Environments, and Trusted Platform Modules offer similar features and facilities. However, the secure enclave is unusual because it has been integrated into all Macs with T2 or Apple silicon chips, and all Apple’s recent devices, and can’t be disabled or bypassed.

References

Manu Gulati, Michael J Smith and Shu-Yi Yu, US Patent 8,832,465 B2, Security enclave processor for a system on a chip, filed 25 September 2012, granted 9 September 2014.
R Stephen Polzin, James B Keller, Gerard R Williams, US Patent 8,775,757 B2, Trust zone support in system on a chip having security enclave processor, filed 25 September 2012, granted 8 July 2014.
R Stephen Polzin, Fabrice L Gautier, Mitchell D Adler, Conrad Sauerwald and Michael LH Brouwer, US Patent 9,419,794 B2, Key management using security enclave processor, filed 23 September 2014, granted 16 August 2016.
Pierre Olivier Martel, Arthur Mesh and Wade Benson, US Patent 11,455,432 B1, Multi-user storage volume encryption via secure processor, filed 8 June 2020, granted 27 September 2022.
Tarjei Mandt, Mathew Soling and David Wang (2016), Demystifying the Secure Enclave Processor, Black Hat USA 16 (PDF)
Apple, Platform Security Guide
Wikipedia’s overview of Apple silicon chips.

❌
❌