Normal view

There are new articles available, click to refresh the page.
Yesterday — 9 October 2025Main stream

【异闻观止】环球时报|“强烈反对”美国AI公司反华言论,姚顺宇宣布跳槽

9 October 2025 at 15:55

file

CDT编者按:文末附疑似姚顺宇(Shunyu Yao)本人发布在(alfredyao.github.io)上的相关博文。


据香港《南华早报》10月8日报道,一名人工智能(AI)领域的中国学者宣布从美国AI初创公司Anthropic离职,加入其竞争对手谷歌的DeepMind实验室。他表示,Anthropic的“反华言论”是自己离职的重要原因之一。

根据姚顺宇(Shunyu Yao)6日在个人博客发布的文章,他在大语言模型Claude的开发商Anthropic工作不到一年就离开。他说自己“强烈反对”该公司的“反华言论”。上个月,Anthropic公司宣布将停止向“中国实体控股的公司”提供人工智能服务,并在内部文件中将中国列为“敌对国家”。对此,姚顺宇在文中写道:“需要说明的是,我相信Anthropic的大多数员工并不同意这种定性,但我认为,我已没有办法继续留下来。”

CDT 档案卡
标题:“强烈反对”美国AI公司反华言论,姚顺宇宣布跳槽
作者:环球时报
发表日期:2025.10.9
来源:微信公众号“环球时报”
主题归类:反华
CDS收藏:公民馆
版权说明:该作品版权归原作者所有。中国数字时代仅对原作进行存档,以对抗中国的网络审查。详细版权说明

报道称,公开资料显示,姚顺宇本科毕业于清华大学,后在斯坦福大学获得理论与数学物理学博士学位,并曾在加州大学伯克利分校从事博士后研究。2024年10月,他加入Anthropic,参与研发Claude 3.7 Sonnet大语言模型,该模型已于今年2月发布。

姚顺宇表示,他之所以选择加入Anthropic是因为该公司被视为是“物理学背景的学者进入人工智能研究领域的理想起点之一”。他写道:“与物理学相比,人工智能的发展速度快得惊人。回顾过去一年,我对已发生的变化感到震惊。”

《南华早报》报道称,近年来,包括OpenAI在内的多家美国AI公司对中国的负面言论增加,包括直接点名来自中国的竞争者DeepSeek公司。一名要求匿名的前员工透露,OpenAI内部部分来自中国等国的技术人员对公司的相关言论感到不安。

相比之下,谷歌DeepMind首席执行官德米斯·哈萨比斯(Demis Hassabis)呼吁中美两国在人工智能安全等共同关切的领域加强合作。目前,姚顺宇已跳槽加入谷歌DeepMind的大语言模型“双子星”(Gemini)团队,负责参与开发该公司的基础模型。

针对Anthropic公司针对中国企业的相关做法,中国外交部发言人郭嘉昆在9月5日表示不了解具体情况,并强调中方一贯反对将科技和经贸问题政治化、工具化、武器化,这一做法不利于任何一方。


原文链接

My infant year as an AI researcher — Moving from physics to AI

我作为人工智能研究员的幼年岁月——从物理学转向人工智能

Shortly after I left Berkeley postdoc and joined Anthropic, I was planning to write a short article, mostly as a note for myself, about my thought process behind leaving physics and join AI research.

在我离开伯克利博士后并加入 Anthropic 后不久,我本打算写一篇短文,主要作为给自己的记录,说明我离开物理学并投身人工智能研究的思考过程。

Yet, I have never got time to write those down due to the intense work at Anthropic :) Until last Friday(Sept.19), I resigned from Anthropic and got a week’s break before I joined Google DeepMind.

然而,由于在 Anthropic 的紧张工作,我一直没有时间把这些写下来 :) 直到上周五(9 月 19 日),我从 Anthropic 辞职,并在加入 Google DeepMind 之前休息了一周。

Why did I leave physics, and why did I choose AI

我为什么离开物理学、为什么选择人工智能

Mostly because I want to find a direction that have more chances for young people. Theoretical physics is an amazing field for training: it is intellectual challenging, deep and require technics from wide variety of fields including math, computer science(eg.complexity theory) and of course, physics itself. Yet, this field has running out of experiments for many years. A field without experiments can be problematic in many different ways, for example, it will be hard to judge objectively the importance of a theoretical work. It will also be hard to unblock disagreements/confusions just by systematical experiments.


主要是因为我想寻找一个对年轻人有更多机会的方向。理论物理是一个极好的训练场:它在智力上具有挑战性、深刻,并且需要来自包括数学、计算机科学(例如复杂性理论)以及当然还有物理学本身在内的多种技术。然而,多年来这个领域的实验越来越少。一个没有实验的领域在许多方面都会出现问题,例如,很难客观地判断一项理论工作的意义。仅靠系统性的实验也很难解决分歧或澄清困惑。

Then it mainly comes down to AI or QC(quantum computing). Although I believe QC will become important in the future, my impression is the bottleneck now is mainly experimental platforms. Thus I choose AI, which is interestingly similar to physics research as follows:

于是主要就在人工智能和量子计算之间做选择。虽然我相信量子计算将来会变得重要,但我的印象是目前的瓶颈主要在实验平台。因此我选择了人工智能,有趣的是,它在以下方面与物理学研究相似:

How does working on AI feel as a physicist?

作为一名物理学家,从事人工智能的工作是什么感觉?

In some sense, it is similar to research on thermodynamics during the 17th century. Back then, people didn’t even know what was heat: in fact people still believed in Phlogiston theory. But this does not stop people from experimenting scientifically. For example, Boyle’s law tells the relationship between pressure and volume when temperature is fixed. Thus by designing experiments systematically, people still learnt enough ‘laws’, which guided the invention/study of heat engine that changed the word.

在某种意义上,这与 17 世纪对热力学的研究类似。那时,人们甚至不知道什么是热:事实上人们仍然相信燃素说。但这并不妨碍人们进行科学实验。例如,玻意耳定律描述了在温度固定时压力与体积的关系。因此,通过有系统地设计实验,人们仍然学到了足够多的“定律”,这些定律指导了热机的发明/研究,从而改变了世界。

From my naive point of view, it is similar in large scale AI models. On one hand, we still don’t have reliable theory or models describing the behavior of large neural networks. On the other hand, systematical research start to tell us lots of valuable lessons, eg scaling law. (And having those systematical research is becoming an essential element for making constant progress at large scale.)

从我天真的观点看,大规模人工智能模型在很大程度上也类似。一方面,我们仍然没有可靠的理论或模型来描述大型神经网络的行为。另一方面,有系统的研究开始告诉我们许多有价值的经验,比如尺度定律。(而且拥有这些系统性研究正成为在大规模领域持续取得进展的一个重要要素。)

Why Anthropic, and why leaving?

为什么选择 Anthropic,又为什么离开?

Even though I left anthropic, I still view ant as (one of) the best place for physicists(maybe also other STEM background PhD) to start their journey in AI research. I joined anthropic on Oct.1st 2024, when we start to do research for the later called Claude 3.7 sonnet. After being a physicist for many years, it was so exciting to see your research getting impact on the frontier model capability immediately, and witnessing people’s way of interacting with AI changes as new capabilities emerge.

尽管我离开了 Anthropic,我仍然认为 Anthropic 是物理学家(也可能包括其他理工科背景博士)开始 AI 研究之旅的最佳去处之一。我在 2024年10月1日加入Anthropic,当时我们开始为后来被称为Claude 3.7 Sonnet的模型做研究。作为多年的物理学者,看到自己的研究立即对前沿模型能力产生影响,并目睹随着新能力出现人们与AI互动方式的改变,令我感到非常兴奋。

Yet, I decided to leave due to two main reasons:

然而,我决定离开主要有两个原因:

  1. ~40% of the reason: I strongly disagree with the anti-china statements Anthropic has made. Especially from the recent public announcement, where China has been called “adversarial nation”. Although to be clear, I believe most of the people at anthropic will disagree with such a statement, yet, I don’t think there is a way for me to stay.

  2. 大约 40%的原因:我强烈反对 Anthropic 所发表的反华言论。尤其是在最近的公开声明中,将中国称为“对抗性国家”。需要说明的是,我相信 Anthropic 的大多数人会不同意这样的说法,但我认为我无法继续留在这样的环境中。

  3. The remaining 60% is more complicated. Most of them contains internal anthropic informations thus I can’t tell.

  4. 其余的 60%则更为复杂。其中大部分涉及 Anthropic 的内部信息,因此我不能透露。

Time to move on!

是时候继续前进了!

Relative to physics, AI moves insanely fast and looking back I am surprised by how much has happened in the past one year. It was a great honor to see Claude getting better from 3.7 to 4.5, and I personally learnt a lot. Yet it is time to move on.

相对于物理学,人工智能的发展快得惊人,回顾过去一年发生的事情我也很惊讶。看到Claude 从 3.7进步到4.5我感到非常荣幸,我个人也学到了很多东西。然而,现在是继续前进的时候了。

From a personal perspective, Anthropic was my first, and the only, AI job, thus I don’t want my experience/knowledge being biased by a specific lab.(Especially because nowadays core-research do not write paper anymore.)

就个人而言,Anthropic是我的第一份也是唯一一份 AI 工作,因此我不希望我的经验/知识被某一家实验室所偏颇。(尤其是因为现在核心研究不再写论文了。)

So Ant, it was good with you, but it is better without you :)

所以Ant,和你在一起很不错,但没有你会更好 :)

I joined Google DeepMind on Sept.29th.

我于9月29日加入了Google DeepMind。

❌
❌